For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Aalbers, G., Engels, T., Haslbeck, J. M. B., Borsboom, D., & Arntz, A. (2021). The network structure of schema modes. Clinical Psychology and Psychotherapy, 28(5), 1065-1078. https://doi.org/10.1002/cpp.2577[details]
Haslbeck, J. M. B., & van Bork, R. (2021). Estimating the Number of Factors in Exploratory Factor Analysis via out-of-sample Prediction Errors. Manuscript submitted for publication. https://psyarxiv.com/qktsd
Haslbeck, J. M. B., Bringmann, L. F., & Waldorp, L. J. (2021). A Tutorial on Estimating Time-Varying Vector Autoregressive Models. Multivariate Behavioral Research, 56(1), 120-149. https://doi.org/10.1080/00273171.2020.1743630[details]
Haslbeck, J. M. B., Epskamp, S., Marsman, M., & Waldorp, L. J. (2021). Interpreting the Ising Model: The Input Matters. Multivariate Behavioral Research, 56(2), 303-313. https://doi.org/10.1080/00273171.2020.1730150[details]
Haslbeck, J. M. B., Ryan, O., & Dablander, F. (Accepted/In press). The Sum of All Fears: Comparing Networks Based on Symptom Sum-Scores. Psychological Methods. https://psyarxiv.com/3nxu9
Hinze, V., Ford, T., Crane, C., Haslbeck, J. M. B., Hawton, K., Gjelsvik, B., & The MYRIAD Team (2021). Does depression moderate the relationship between pain and suicidality in adolescence? A moderated network analysis. Journal of Affective Disorders , 292, 667-677. https://doi.org/10.1016/j.jad.2021.05.100[details]
Lunansky, G., van Borkulo, C. D., Haslbeck, J. M. B., van der Linden, M. A., Garay, C. J., Etchevers, M. J., & Borsboom, D. (2021). The Mental Health Ecosystem: Extending Symptom Networks With Risk and Protective Factors. Frontiers in Psychiatry, 12, [640658]. https://doi.org/10.3389/fpsyt.2021.640658[details]
Moriarity, D., Horn, S., Kautz, M., Haslbeck, J. M. B., & Alloy, L. (2021). How handling extreme C-reactive protein (CRP) values influences CRP and depression symptom networks: A replication and extension of Fried et al. (2019). Brain, behavior, and immunity, 91, 393-403. https://doi.org/10.1016/j.bbi.2020.10.020
Robinaugh, D. J., Haslbeck, J. M. B., Ryan, O., Fried, E. I., & Waldorp, L. J. (2021). Invisible Hands and Fine Calipers: A Call to Use Formal Theory as a Toolkit for Theory Construction. Perspectives on Psychological Science, 16(4), 725-743. https://doi.org/10.1177/1745691620974697[details]
Verwimp, C., Tijms, J., Snellings, P., Haslbeck, J. M. B., & Wiers, R. W. (2021). A network approach to dyslexia: Mapping the reading network. Development and Psychopathology, 1-15. https://doi.org/10.1017/S0954579421000365
Walentek, D., Broere, J., Cinelli, M., Dekker, M. M., & Haslbeck, J. M. B. (2021). Success of economic sanctions threats: coercion, information and commitment. International Interactions, 47(3), 417-448. https://doi.org/10.1080/03050629.2021.1860034[details]
Burger, J., Isvoranu, A. M., Lunansky, G., Haslbeck, J. M. B., Epskamp, S., Hoekstra, R. H. A., Fried, E. I., Borsboom, D., & Blanken, T. F. (2020). Reporting Standards for Psychological Network Analyses in Cross-sectional Data. Manuscript submitted for publication. https://psyarxiv.com/4y9nz/
Dablander, F., Ryan, O., & Haslbeck, J. M. B. (2020). Choosing between AR(1) and VAR(1) Models in Typical Psychological Applications. PLoS ONE, 15(10), [e0240730]. https://doi.org/10.1371/journal.pone.0240730[details]
Fried, E. I., von Stockert, S., Haslbeck, J. M. B., Lamers, F., Schoevers, R. A., & Pennix, B. W. J. H. (2020). Using network analysis to examine links between individual depressive symptoms, inflammatory markers, and covariates. Psychological Medicine, 50(16), 2682-2690. https://doi.org/10.1017/S0033291719002770[details]
Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Structure Estimation for Time-Varying Mixed Graphical Models in high-dimensional Data. Journal of Statistical Software, 93, [8]. https://doi.org/10.18637/jss.v093.i08[details]
Haslbeck, J. M. B., & Wulff, D. U. (2020). Estimating the Number of Clusters via Normalized Cluster Instability. Computational Statistics, 35(4), 1879–1894. https://doi.org/10.1007/s00180-020-00981-5[details]
Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2019). Mouse-Tracking: A Practical Guide to Implementation and Analysis. In M. Schulte-Mecklenbeck, A. Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (2nd ed., pp. 111-130). (The Society for Judgment and Decision Making Series). New York: Routledge. https://doi.org/10.31234/osf.io/zuvqa, https://doi.org/10.4324/9781315160559-9[details]
Robinaugh, D. J., Haslbeck, J. M. B., Waldorp, L. J., Kossakowski, J. J., Fried, E. I., Millner, A. J., McNally, R., van Nes, E. H., Scheffer, M., Kendler, K. S., & Borsboom, D. (2019). Advancing the Network Theory of Mental Disorders: A Computational Model of Panic Disorder. Psychological Review. https://doi.org/10.31234/osf.io/km37w
Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., & Schulte-Mecklenbeck, M. (2019). Mouse-tracking: Detecting types in movement trajectories. In M. Schulte-Mecklenbeck, A. Kühberger, & J. J. Johnson (Eds.), A handbook of process tracing methods (2nd ed., pp. 131-145). New York: Routledge. https://doi.org/10.4324/9781315160559-10[details]
Haslbeck, J. M. B., & Waldorp, L. J. (2018). How well do network models predict observations? On the importance of predictability in network models. Behavior Research Methods, 50(2), 853-861. https://doi.org/10.3758/s13428-017-0910-x[details]
Haslbeck, J. M. B., & Fried, E. I. (2017). How predictable are symptoms in psychopathological networks? A reanalysis of 18 published datasets. Psychological Medicine, 47(16), 2767-2776. https://doi.org/10.1017/S0033291717001258[details]
Kossakowski, J. J., Groot, P., Haslbeck, J. M. B., Borsboom, D., & Wichers, M. (2017). Data from ‘Critical Slowing Down as a Personalized Early Warning Signal for Depression’. Journal of Open Psychology Data, 5(1). https://doi.org/10.5334/jopd.29[details]
Haslbeck, J. M. B., Wood, G., & Witte, M. (2016). Temporal dynamics of number-space interaction in line bisection: Comment on Cleland and Bull (2015). Quarterly Journal of Experimental Psychology, 69(6), 1239-1242. https://doi.org/10.1080/17470218.2015.1095773[details]
2020
Haslbeck, J. M. B. (2020). Modeling psychopathology: From data models to formal theories. [details]
The UvA website uses cookies and similar technologies to ensure the basic functionality of the site and for statistical and optimisation purposes. It also uses cookies to display content such as YouTube videos and for marketing purposes. This last category consists of tracking cookies: these make it possible for your online behaviour to be tracked. You consent to this by clicking on Accept. Also read our Privacy statement
Necessary
Cookies that are essential for the basic functioning of the website. These cookies are used to enable students and staff to log in to the site, for example.
Necessary & Optimalisation
Cookies that collect information about visitor behaviour anonymously to help make the website work more effectively.
Necessary & Optimalisation & Marketing
Cookies that make it possible to track visitors and show them personalised adverts. These are used by third-party advertisers to gather data about online behaviour. To watch Youtube videos you need to enable this category.