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We shall introduce in this article a theory of retrieval from long-term
memory, and present a number of applications to data from paradigms
involving free recall, categorized free recall, and paired-associate recall.
The theory combines elements of probabilistic search theory (e.g., Shif-
frin, 1970) and associative network theory (e.g., Anderson, 1972). It
posits cue-dependent probabilistic search of an associative long-term
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memory network, and is denoted SAM, for Search of Associative
Memory.

Our goals, given the length of this article, are limited in scope. The
general theory is surveyed briefly, but the reader is referred to Raaijmak-
ers and Shiffrin (1981) for a detailed discussion of the underlying basis of
the theory. Then a quantitative simulation model of SAM will be de-
scribed. This model is used, in essentially intact form, in many cases with
no changes in parameters, to fit data from a variety of memory
paradigms. To reduce the article’s length these paradigms will be re-
stricted to free and cued recall tasks for lists of singly presented items to
be remembered. v

I. A Search Theory for Retrieval from Associative
Memory

A. THE STRUCTURE OF LONG-TERM STORE (LTS)

Long-term store (LTS) is held to be a richly interconnected network,
with numerous levels, stratifications, categories, and trees, containing
varieties of relationships, schemata, frames, and associations. Roughly
speaking, all elements of memory are connected to all others, directly or
indirectly (though perhaps quite weakly).

The ‘‘objects”” of memory are defined by the task and the level of
analysis pursued by the investigator. The boundary of a memory object is
seldom clearly defined. For example, a ““word,’” a ‘‘letter,”” and a
“‘story’’ may be memory objects in different tasks; each consists of a
complex bundle of informational elements, associations, and relations. In
the present article the level of analysis is chosen so that the ‘‘word
image,”” or some other similarly complex and distinct entity (such as a
picture), is the basic object of memory. Even though a memory object has
no clear boundaries, it can make sense to distinguish such objects from
each other, in the sense that interconnections between elements and fea-
tures will be stronger and more numerous within one object than between’
objects. Thus a memory object tends to be a relatively unitized entity.

We propose that memory structure at a given level of analysis be sum-
marized in a retrieval structure. This structure contains retrieval strengths
between the possible probe cues and the objects in memory. These
strengths represent an average associative relationship between probe
cues and memory objects, ignoring details such as the kind of relation-

ships involved. As we shall indicate below, these strengths are used ina .
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simple ratio rule to determine the probability that a particular object will
be elicited from memory when long-term memory is probed with a given
set of cues. The retrieval structure is designed to capture those aspects of
the memory structure that are important for retrieval. The only restriction
on these strengths is that they be positive numbers. Such a structure is a
rich enough representation for our retrieval model to predict many results
from a variety of paradigms.

In the tasks treated in this article, the memory objects will typically be
combinations of word features and contextual features, called ‘‘images.”’
The important role played by temporal and contextual information is
understandable in light of the tasks, requiring memory that a word was
presented during a particular list. It would not do to let the memory image
consist of word information without temporal context, since the strong
preexperimental strengths between such images would mask the relatively
small increments in strength that would occur due to presentation in a
single list. Temporal-context, separate from word information, may be
used as a cue to probe such a memory structure, or combinations of
context with words may be used as cue sets to probe memory. Presum-
ably, context alone is used as a cue when no words are available, as might
be the case at the start of free recall.

Although SAM does not require a particular memory representation, it
is useful to give one simplified representation to illustrate our main
points. Figure 1 schematizes associations that might be formed after study
of a five-item list. The item information, and the context information
associated to the item information, are enclosed by solid lines. The
strength of association of context to an image, when context is used as a
cue, is given by the solid arrows. The solid arrows point to the item
information since in many tasks the ‘‘name’’ of the sampled image is
required. The dashed regions enclosing both context and item features
indicate images of an item within the present context, i.e., the memory
objects. These images are associated to other such images and the
strength and direction of these interitem associations are indicated by the
dashed arrows. (Associations between features are complex and are not
shown in this figure; also not shown are residual associations between
items not rehearsed together.)

In general, we prefer to treat multiple representations of the ‘‘same’’
item as separate images, each with its particular temporal-contextual ele-
ments. However, these images may be closely associated due to their pool
of shared features, so that a type-token (e.g., Anderson & Bower, 1973)
or episodic-semantic (e.g., Tulving, 1972) distinction may still be main-
tained. The set of common semantic features in many images can be
considered the ‘‘type’’ or semantic image.
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Fig. 1. A schematic depiction of the associative network in long-term store after study of a
five-item list. Shown are the directional associations (dashed arrows) between images (each consist-
ing of item plus context); also shown are the associations between context elements when used as
cues, and the various images (solid arrows). Residual associations between images of items not
rehearsed together are not shown. Xs refer to various features. .

The final point to be emphasized is the permanence of long-term mem-
ory. We assume that information may be entered in, and added to, the
long-term store, but not deleted from, or subtracted from the store.
Forgetting is thus assumed to occur as a result of retrieval failure; factors
governing retrieval failure will be discussed later.

Probabilistic Search of Associative Memory 211

B. RETRIEVAL FROM LONG-TERM STORE

The most important feature of the retrieval system is cue-dependence
(see Tulving, 1974). Probe cues, whether consciously selected or not,
govern each stage of the memory search. The degree to which an image in
memory is associated to the set of probe cues, in comparison with the
degrees to which other images are associated to the set of probe cues,
determines the probability that that item will be selected at that moment in
the memory search.

It is assumed that the retrieval system is noisy and inherently prob-
abilistic; for a given memory structure and set of probe cues, the image
selected from memory is a random variable. It is easy to misinterpret such
a statement and ascribe more randomness to the retrieval system than is,
in fact, present. The strength may be such that one image is far more
likely to be selected than any other. Furthermore, the subject can control
the search by changing the probe cues as needed. Nevertheless, the inher-
ently random nature of the search has important consequences; for exam-
ple, images that are sampled at one point in the search may be resampled
later, especially if the probe cues are not changed.

The retrieval system as a whole is an extension of that proposed by
Shiffrin (1970). It envisions retrieval as a memory search proceeding in a
series of discrete steps, each step involving a selection, or sample, of an
image from long-term store. The substages within any one step are de-
picted in Fig. 2. Retrieval begins with some question the subject needs to
answer regarding the contents of long-term store. This may be as simple
as ‘‘what is another word on the list most recently presented?’’ In the
most general case, a retrieval plan will next be generated to guide the
search for the answer. Initially, the plan may be somewhat vague by
intention, in the hope that later phases of the search will be guided by
information located in earlier phases. The plan includes such things as an
initial decision whether to search long-term store, how to search (for
instance, in a temporal order, or by an alphabetic strategy), how to choose
probe cues (for instance, should recalled information be used as probe
cues?), what combinations of probe cues should be employed, with what
weights, whether to employ the same probe cues on successive loops of
the search or whether to alter the cues, whether to search first for prelimi-
nary cues to guide later search, and how long to search (i.e., how many
loops of the search process are expected). Of course, the plan itself is
constructed on the basis of the information in the test query, the informa-
tion currently available in short-term memory, and information retrieved
from long-term memory; the long-term information may be concerned
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Fig. 2. A generalized depiction of the various phases of retrieval in the theory.

with search plans, previous successful plans in similar situations, and so
forth (see Williams, 1977, for a discussion of retrieval plans).

Next, on the basis of the retrieval plan, the subject assembles probe
cues to be used in retrieval. Generally, these cues will include: (1) infor-
mation the subject has about the context at the time of study, (2) context
representative of the moment of test (although these cues may not be
useful or desired), (3) information from the test question, (4) information
retrieved earlier in the search, and (5) information generated during con-
struction of the retrieval plan. It is almost certainly the case, however,
that there will be limitations on the amount of information that may be
combined effectively into a set of probe cues. Perhaps the number of
probe cues that may be used has an upper limit, or perhaps the various
cues are weighted in importance (and effect), the sum of the weights
being limited.

We argue that long-term memory images and probe cues are quite
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distinct. For example, suppose ‘‘horse’’ has been placed in long-term
memory at the time of study, and then a recognition test is given with
“‘horse”’ as the test item. The image will consist of *‘horse-at-study plus
study context’’ and the test cues will consist of ‘‘horse-at-test’’ along with
““‘test context’’ (the encodings of horse may differ in the two instances).
Thus if the memory image is sampled, it may be evaluated alone or
compared with the probe cues. However, these two entities will usually
be strongly associated due to their large pool of common information; it is
this fact that makes it likely that the cue ‘‘horse’’ will cause the image
“‘horse’’ to be sampled. We shall not deal with recognition in this article,
but even in recall tasks note that the image corresponding to a word cue
may often be sampled (though such a sample will not be useful).

The next phases of the retrieval process concern sampling and recov-
ery. As opposed to the other stages, these stages are largely automatic and
not under direct control of the subject. They determine what image is
sampled and how much of the information in (or perhaps near) the sam-
pled image becomes available to the subject for evaluation and decision
making.

An image has a probability of being sampled that is determined by the
associative strength relating the set of probe cues to the image, in com-
parison with the strengths relating all other images to the set of probe
cues. (This rule will be quantified shortly.) In fact, almost all images in
long-term memory will have such low strengths of association to the cues,
that their sampling probabilities will be vanishingly small. The relatively
small set of images with nonnegligible sampling probabilities is denoted
the ‘‘search-set.’’ It is therefore convenient (especially when incorporat-
ing the model in a computer simulation) to separate the sampling phase
into two parts: first, a restriction to the search-set; second, an appropriate
probabilistic choice from the search-set. The choice of search-set is gen-
erally determined by task considerations. For example, if a subject is
asked to recall a just-presented list, the search-set might be assumed to
consist of the images of all the words in that list (or perhaps of all the
words in the session, if it is necessary to predict intrusions).

When an image is sampled, its features will tend to become activated.
It is assumed that the stronger is the association between the selected
image and the probe cues, the larger will be the proportion of image
elements that will be activated and made available to the subject’s evalua-
tion and decision-making mechanisms. This process is termed ‘‘recov-
ery.”’ It may well be that the particular elements recovered from a given
image for a given set of cues are fixed (at least for the short-run), so that
the same elements will be recovered if the same image is sampled several
times in succession.




214 Jeroen G. W. Raaijmakers and Richard M. Shiffrin

Once a given set of informational elements has been recovered, the
subject carries out evaluations and makes appropriate decisions. Such
evaluations include deciding what is the verbal ‘‘name’’ of the sampled
image, whether the sampled image was indeed on the list being tested,
whether the sampled image matches the test cue (in a recognition test),
etc. The subject also decides whether he has succeeded in his search,
whether a response should be output, and whether the search should be
continued. If the search is continued, the process loops back to the re-
trieval plan to start the next step in the retrieval process.

C. QUANTITATIVE SAMPLING AND RECOVERY RULES

Let us begin by positing an N + 1 by N matrix, with every possible
memory image in the search set (N of them) given horizontally, and every
possible individual cue (N + 1 of them, including context) given verti-
cally. The cues, excepting the context cue, correspond to the stored
images in a one-to-one fashion. Thus each image represents an item that
could be used as a cue. Let the matrix (Fig. 3) contain a strength (of
association) between each cue and each image. Let S1(Q;,/;) denote this
strength between Q; and image [;. (The T indicates that these are the
strengths that apply at Test.) Call this a ‘‘retrieval structure.”’

The sampling assumption may now be stated as follows:

M
H {81(Q; 1)}
Ps(1;|Q1, Q2 ... Ou) = % " a1
RZ:HIJ {S+(Q; )}

The term on the left indicates the probability of sampling image I;
given cues Q;, ..., Qy are used in combination as a probe set. The W;
in the right-hand expression are weights assigned to the different cues
representing their relative saliency, or importance (or overlap, or similar-
ity). (In the applications in this article it was unnecessary to assume un-
equal weights, and the W; were all set to 1.0.)

The key to the present approach is the method used to combine cues:
the strengths to the different cues are multiplied (perhaps in weighted
fashion), and the ratio rule (Luce, 1959) applied to the products. This
multiplicative feature has the useful and important consequence that it
allows focusing of the search. The images with the highest probability of
being sampled are those with the highest product of strengths, and hence
those that tend to be strongly associated to all of the cues. The sampled
image tends to come from the intersection of the sets of images strongly
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Fig. 3. The ‘‘test matrix’’: the matrix of strengths which determine the probabilities of selection
and recovery of list images (horizontal margin) when different cues (vertical margin) are used in the
cue set. Entries in the cells are strengths from individual cues to individual images; when multiple
cues are used in the cue-set, then the strengths are combined according to Eqgs. (1) and (2) in the text.
Q; refers to the context cue; Q;  refers to the word whose image is /.

associated to each cue separately. By contrast, an additive combination
rule could give a high probability of sampling an image if only one cue
strength is high (even if all the others are zero).

Consider next the recovery process. We give here the recovery rule
when the subject’s task is to generate the ‘‘name’’ of the word encoded in
the selected image:

M
Pr(1i]|Q:1,Q> ... Ou) = 1 —exp{=3> W;S1(Q;, 1)} )]

=1

The expression on the left represents the probability of recovering
enough information to correctly give the ‘‘name’’ encoded in image /;,
which has just been selected using probe cues Q; to Q. The right-hand
expression is somewhat arbitrary mathematically, though it does capture a
number of features we consider desirable for a recovery rule in this case.
First, the stronger the strength to any one cue and the stronger the sum-
med strengths to all cues, the more likely is recovery. Second, the larger
is a cue weight, the more the strength to that cue will affect recovery.
Note that recovery obeys an additive rather than multiplicative rule, so
that recovery probability will be high if even one weighted strength is
high. Third, the probabilities will range from O to 1 as the sum of the
strengths ranges from O to . Note that both these sampling and recovery
rules are natural elaborations of the Shiffrin (1970) rules.
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D. SHORT-TERM STORE AND LONG-TERM STORE

The description of structure and retrieval given above is to a large
degree independent of the theoretical assumption that memory is a two-
phase system. Nevertheless, we find it useful for many reasons to place
our retrieval system within a memory theory organized around a short-
term store (STS) and long-term store (LTS). Atkinson and Shiffrin (1968)
provide a prototype of such a system, but Shiffrin (1975) gives a more
contemporary treatment. We shall review this system very briefly.

STS is postulated to be a temporarily activated subset of the informa-
tion (and structure) in LTS, the permanent storage system. Sensory in-
formation presented to the system is analyzed automatically in a series of
stages along many parallel paths. This analysis results in activation of
information in LTS, and activation is equivalent to entry in STS. Alterna-
tively, information is activated from LTS and placed in STS on the basis
of internally generated probe cues, as described in earlier sections. Inevita-
bly, both types of LTS activation occur together, so that sensory input
(bottom-up processing) and information previously retrieved from LTS
and presently still in STS (top-down processing) will jointly act to deter-
mine subsequent activation. In general, the activated information decays
(becomes inactive) very rapidly, though small amounts of information
may remain active in the absence of new input, or may be maintained in
an active state for a long time through control operations like coding and
rehearsal.

A major role of STS is its use as a working space for control processes
of all sorts, including plans, coding, rehearsal, decisions, and so forth.
The most important characteristic of STS is its limited capacity (see
Shiffrin, 1976). There are limitations upon the rate of retrieval and exam-
ination of the contents of STS, upon the duration of residence in STS,
upon the amount of information active in STS, upon the ability to focus
and divide attention, and upon the rate of encoding of new information,
among others.

These STS limitations affect retrieval in a number of ways. The im-
permanence and capacity limitations of STS limit the amount of informa-
tion that may be sampled from the search set and maintained in an active
mode. The limited rate of examination leads to sequential examination of
one image at a time. The limitations on total STS load put bounds on the
number of cues that may be used simultaneously (or on the sum of the
weights).

E. LONG-TERM STORAGE AND LEARNING

Learning in our system consists of the formation of new associations,
relations, and structures, in LTS, between elements and images already
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present in LTS, but concurrently active in STS. Although contiguity in
STS may produce some storage in a passive mode, the strongest associa-
tions are formed when the subject gives attention to the material, and
applies control processes like rehearsal, coding, evaluation, and relating
the new material to already stored structures.

In most learning situations, storage will result from a combination of
LTS retrieval and STS control operations. Indeed, since the coding of
sensory input is also a form of LTS retrieval, all storage can be conceived
as retrieval of a variety of LTS structures followed by the formation of
new associative relationships between the retrieved structures.

The idea that the information simultaneously active in STS tends to be
stored together is an extremely important aspect of the theory. In particu-
lar, it explains the prominence of temporal-contextual features (i.e.,
episodic memory—see Tulving, 1972) in memory images. Such tem-
poral-contextual features include ‘‘incidental’’ information from the sen-
sory environment and the subject’s long-term store that happens to be
present in STS at the time of a storage event. They might include the
location, the temperature, the time of day, recent events, the subject’s
physical state, feelings, emotions, and recent thoughts. Each and every
storage event will contain such temporal-contextual information to some
degree, and this temporal context plays a prominent role in our retrieval
theory and explanations of forgetting. In all retrieval situations, context
will play a role as one of the probe cues, either by intent or accident.
Presumably, the subject can, through attention, vary the weight assigned
to this context cue, but such information will always be present in STS
and will always play at least a small role as a retrieval cue. Whenever
possible, of course, a knowledgeable subject will try to reinstate in STS
as far as possible the contextual cues that had been present at the time that
the to-be-recalled image had been stored.

F. LONG-TERM FORGETTING AS RETRIEVAL FAILURE

There are two basic reasons why an image may be retrieved better. at
time A than at time B. First, the cues utilized at time A may be more
strongly associated to the image than those used at time B. Second, the
strength or number of other images associated to the cues (even if the
cues are the same) may be greater at time B than at time A. Everything
else being equal, an increase of cue to image strength will increase both
sampling and recovery probabilities [see Egs. (1) and (2)]. On the other
hand, for fixed cue to image strength, an increase in the strengths of cue
to other images will reduce the sampling probabilities (though probably
leaving recovery unaffected).

The increase in the strengths of association of cues to other images
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tends to be an inevitable consequence of new learning. This new learning
will not necessarily lead to forgetting, however. The new information
might be organized together or integrated with the old image so strongly
that the retrieval of either set of information will then lead at once to
retrieval of the other set. This integration could be conceptualized either
as resulting in a single, new larger image, or as resulting in two tightly
associated images. In the latter case, retrieval of one of the images could
result in that image being used as a cue, and thereby eliciting the other
image. This possibility is an example of a general principle: forgetting
due to new learning occurs when the same cue is utilized in an attempt to
locate one image among an increasing number of other images. On the
other hand, the cues may be changed during the search so that each cue is
related to a subset of the increasing number of images; in this event
forgetting may be ameliorated or even reversed.

The decrease in the strengths of association of cues to image can be the
result of several factors, chief of which is the change of context over time
(see Estes, 1955; Bower, 1972). The context at the time of storage makes
the best retrieval cue, but at the time of test, the context cue used may
consist largely of the context information at the time of test, which will
usually differ from the storage context by a greater amount as time be-
tween storage and test increases. Similar considerations apply to noncon-
textual cues, the general rule being that sampling and recovery will be
worse as the retrieval cues chosen are less effectively associated to the
desired image.

II. A Model for Free and Cued Recall

We develop the theory initially for the paradigm of free verbal recall. A
list of N “‘unrelated’’ words is presented, one at a time. The presentation
is sometimes followed by an arithmetic task to clear STS and restrict
retrieval to LTS. The test involves recall of as many list words as possi-
ble, in any order. Usually, enough recall time is provided that the subject
decides to cease retrieval, in the belief that memory is exhausted, before
the recall period ends.

A. STORAGE ASSUMPTIONS

On the basis of coding and rehearsal operations that operate during list
presentation, an LTS structure is generated and stored in LTS. The
strength of associations of the cues at test to the LTS images is based on
this structure.
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Although many storage models are possible, we find it easiest to adopt
the now traditional buffer rehearsal process of Atkinson and Shiffrin
(1968). The buffer size is r. New words enter the buffer until it is full;
then each new word replaces a randomly chosen word already in the
buffer. The retrieval structure contains associative strengths between a
general context cue and the images on the list, and between word cues and
those images. It is assumed that these associative strengths grow linearly as
a function of the total time that a word or a pair of words is rehearsed
in the buffer. If we let #; and z;; be the times spent in the buffer respec-
tively by 7;, and by /; and I; together then we assume: St (C, I;) = at;;
St(1;, Ij) = ST(IJ', 1) = bt,'j, ti; ¥ 0;, St(;, I) = ct;. Finally, even if
two words on the list are not rehearsed together, they share context and
are therefore assumed to have a nonnegligible residual retrieval
strength, d: St(l;, I;) = St(l;, I;) = d, t;; = 0. Thus the four parame-
ters, a, b, ¢, and d, along with the buffer size r, completely determine
the test matrix ar the start of retrieval.

One additional storage process needs to be discussed. We assume that
additional storage may take place during the course of retrieval itself.
During retrieval, it will sometimes happen that a word is sampled, recov-
ered, and recalled when a particular combination of cues is utilized as a
probe set. Whenever this happens, but only when the recalled word is
actually output, we assume that the strengths of the cues to the sampled
image are incremented (i.e., increased). In addition, we assume that the
self-association strength of the sampled image is also incremented in each
such case. Thus we assume: S'v(C, I;) = St(C, I;) + e; S'v(I;, I;) =
S'vU;, I;) = Sc(;, 1;) + f; S+, I;) = Stx({;, I;) + g, where the
primes indicate the strengths after incrementing, and e, f, and g are the
parameters giving the amount of the increment in each case. As we shall
see in the retrieval model, context will always be a cue, so the context
strength and the self-association strength will always be incremented after
a recall. The word-word strength will be incremented only in those cases
in which a word was one of the cues.

B. RETRIEVAL ASSUMPTIONS

The heart of the retrieval model is Eqgs. (1) and (2), giving sampling
and recovery probabilities. In the present applications the weights W, are
set equal to 1.0.

At test time, any words still remaining in STS are output. Then re-
trieval from LTS begins. Figure 4 gives a flowchart corresponding to the
first, main, phase of the model (which was written as a computer simula-
tion).
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Fig. 4. A flowchart for phase one of the retrieval process in the computer simulation of SAM developed for free recall.
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Search goes on until a criterion of Kysx total failures is reached. A
failure is every retrieval attempt that does not lead to recall of a new
word. Thus, at the start of the recall from LTS the total failure counter K
is set equal to 0. Next, the subject uses the general context cue, represent-
ing the context during study of that particular list, to sample from the
images that are associated to that cue [Eq. (1) is used]. Suppose that
image I; has indeed been sampled; this is a failure if the image is ‘‘old’’ or
if the image is new and cannot be recovered. An image is considered ‘‘old”’
if it has already been recalled, or if each of the present cues has previously
been used to sample this image (unsuccessfully). This may be justified by
the assumption that a given, fixed set of probe cues will always lead to
recovery (i.e., activation) of the same set of features from a given sam-
pled image. If the image is not ‘‘old,”’ the recovery rule of Eq. (2) is
applied. If recovery fails, then a failure is counted, and context sampling
is tried again. If recovery succeeds, then the strength S(C, I;) is in-
cremented by e, and the self-association S1(Z;, I;) is incremented by g.

After a successful recovery, the recalled word, I;, is used as a retrieval
cue along with context for the next sample [Eq. (1) is used]. Suppose
image I; is sampled. Then, as before, this is a failure if /; is ‘‘old’’ or is
new and cannot be recovered. (Note that in this case, the image may have
been sampled unsuccessfully before, but the image will be considered
‘“‘new’’ as long as the retrieval route I; — I; is ‘‘new.”’) If I; is new, then
the recovery probability is determined by Eq. (2). If recovery fails, then a
failure is counted, and L and K are increased by 1. If Lysx and Kysx are
not reached, then the same cue combination is used again. If Ly,x is
reached, then only context is used in the next cue set.

If recovery succeeds, then all relevant strengths are incremented:
St(C, I;) is incremented by ¢, St(I;, I;) is incremented by g, and St(/;,
I;) is incremented by f [as is St(/;, I;) since we assume bidirectionality].

If I; has been recovered, then this word is used as a cue, along with
context, in the next cue set. This entire process continues until Kyx total
failures are reached.

In summary, extensive use is made of interitem associative routes:
whenever a new word is recalled it is used as a cue either until Lyax
failures accumulate or until a new word is recalled, in which case the new
word is used as a cue. Of course, it could be argued that all interitem
routes have not been fully explored, since a switch to a new word cue may
occur before search with the previous word cue has been exhausted.

For this reason a final ‘‘rechecking’’ process is incorporated in the
model after the Kyax criterion has been reached. Every word that has
been recalled (presumably they are written down and hence available) is
used as a cue, along with context. Lysx samples are made with each such
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cue combination. Any new words recalled during this period are also
“‘rechecked.’” With this rechecking process added, it may be argued that
the subject feels all retrieval routes have been tried and exhausted.

It is not too difficult to see that this retrieval model is at least potentially
able to explain a variety of data in free recall, especially if one recognizes
that the model combines features of two powerful models, namely, the
model of Shiffrin (1970) and the FRAN model of Anderson (1972).

C. PARAMETERS

The model described above is ready to be applied to the data from free
recall studies. The parameters are a (context to image strength), b (image
to image strength), ¢ (image to self strength), d (residual strength), e
(context to image increment), f (image to image increment), g (self
increment), Kyax (total failure stopping criterion), Lyax (stopping crite-
rion for a word cue), and r (buffer size).

At first glance, 10 parameters seems quite a high number, even though
we shall fit a great deal of data from a variety of paradigms. For example,
Shiffrin (1970) fit a great deal of free recall data with just three parame-
ters. This objection is ameliorated by the following factors. We can show
that most of the present parameters, and their precise values, are not
essential for the fit of the model to most of the data. The parameters are
listed above for generality, even though some are never varied and others
are equated before fits to the data are begun. Some of the parameters are
given nonzero values and included in the fit merely to demonstrate that
the presence of the processes they represent will not harm the ability of
the model to predict the data. In fact, we have set many of these parame-
ters to zero, and no harm to the model’s predictions results. However,
each of these parameters represents processes that we feel are needed on
logical grounds, or needed to deal with data from at least one of the
studies to be discussed in this paper. The roles played by the various
parameters have been extensively explored by simulation means, as have
certain process assumptions, and the results of these explorations will be
summarized briefly or reported in detail in the remainder of the article.

III. Applications of the Theory
A. FREE RECALL: SERIAL POSITION, LIST LENGTH,
PRESENTATION TIME

Primacy and recency effects are predicted by our model as a conse-
quence of the buffer assumption. These effects are therefore easy to
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predict but they are not very informative concerning the LTS retrieval
process. A more interesting result is that the model is able to describe the
serial position curves for different list lengths and presentation times with
the same set of parameter values. Figures 5, 6, and 7 show the serial
position curves obtained by Murdock (1962) in a task including STS
recall. In Murdock’s experiment six groups of subjects each had a dif-
ferent combination of list length and presentation rate. The six conditions
were 10-2, 20-1, 15-2, 30-1, 20-2, and 40-1, where the first number
refers to the list length and second number indicates the number of sec-
onds that an item was presented.

The parameters of our model were very roughly estimated by a Monte
Carlo simulation technique from the data of conditions 10-2, 20-1, 20-2,
and 40-1. These parameter estimates should not be regarded as optimal
since only a limited search of the parameter space was feasible. More-
over, the parameter space is quite shallow, so that many other combina-
tions of parameter values will give a fit about equally good.

Many of the parameters were set arbitrarily, rather than estimated. The
buffer size, r, was set equal to 4, and Kyax set equal to 30, on the basis
of previous work (Shiffrin, 1970). Lysx was set equal to 3 (a value that
later simulations showed produced near maximum recall). The values of
e, f, and g (incrementing) were set equal, d (the residual) was set to one
fifth of b, and then a, b, and e were estimated. The values that gave a
“best’’ fit, roughly, were a =.055; b =.02; ¢ =.6. The resulting
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Fig. 5. Serial position results (Murdock, 1962) for 20- and 40-word lists at 1 sec/word. Predic-
tions from the SAM model with r=4, Kyax=30, a=c¢=.055, b=.02, d=.004, e=f=g=.6. These
parameters are also used to derive the predictions in Figs. 6 and 7.
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Fig. 6. Serial position results and SAM’s predictions for a 30-word list at 1 sec/word and a
15-word list at 2 sec/word. (Data from Murdock, 1962.)
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predictions are shown in Figs. 5, 6, and 7. Clearly, the fit is quite
adequate.

Note that both the predictions and the data show a list-length effect: the
probability of recall is a decreasing function of list length. This list-length
effect is predicted by the model because the search termination criterion is
exceeded sooner for the longer lists, relative to the list length, i.e.,
relatively fewer samples are made from a longer list than from a shorter
list. The probability of sampling an item is therefore lower for an item
from a longer list. This effect is predicted by the model even when the
criterion is set very high (Kyax = 100) or when a stop-rule of Kyax
consecutive failures is used. Thus, this prediction is a consequence of the
basic structure of the model: a sampling-with-replacement retrieval pro-
cess coupled with a fixed termination criterion (i.e., the criterion does not
vary with list length).

We should note that many of the process assumptions and parameter
values are not essential for predicting the Murdock data. If rechecking is
eliminated, a very slight adjustment in the a, b, and e values will produce
an equivalent fit. If the residual association, d, is removed (set to 0), an
equivalent fit is obtainable by changing a to .065 and b to .015. If the
stopping rule is changed to Kyax consecutive failures, an equivalent fit is
obtained without changing any parameters, but letting Kyax =15 (in-
cluding the three failures in the last search with a word cue).

Although the fit to Murdock’s data is quite good, list length and presen-
tation time per item were not varied over a very wide range. Roberts
(1972) reported the results of a large, well controlled study, where four
list lengths (10, 20, 30, or 40 items) and five presentation rates (.5, 1, 2,
4, or 8 sec per item) were varied in a factorial design. His results are
shown in Figs. 8 and 9 in the top panels, where we have averaged the data
for the auditory and the visual presentation modes. Note that these results
include recall from short-term store since no interpolated task was given.
These results show that the mean number of words recalled is not a linear
function of the total presentation time (Murdock, 1960) but a negatively
accelerated function as found by Waugh (1967). They also clearly show
that the total-time hypothesis (Murdock, 1960) is incorrect: equal total
presentation times do not yield equal levels of recall.

Figures 8 and 9 also show the predictions derived from the present
model. These predictions include of course the recall from the STS-
buffer. Parameters were estimated as in the case of Murdock’s data: a, b,
and e were estimated. The best fitting values were a = .10, b = .10, ¢
=.70. The quality of the fit to the data is seen most easily in Fig. 10,
which compares probabilities of predicted and observed recall for each of
the 20 points in Fig. 8 (or 9). Obviously the fit of the model is quite
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Fig. 8. Observed data (Roberts, 1972—top panel) and predictions of SAM (lower panel), for
mean words free-recalled as a function of presentation time and list length (LL). The parameters of
the model (see text): r=4; Kyax=30; Lyax=3; a=c=.10; b=.10; d=.02; e=f=g=.70.

satisfactory. Note that in our model presentation time per item has its
effect mostly on the probability of recovery, not on the probability of
sampling [see Egs. (1) and (2)]. There is only a small effect on the
probability of sampling due to the fact that the increment upon successful
recovery is the same constant in all conditions and thus relatively higher
in the case of a lower presentation time per item. As with Murdock’s data,
a list-length effect is evident in Fig. 8. Our model predicts such effects
because relatively fewer samples are made from a longer list. Thus, the
list-length effect is predicted to be a retrieval effect, not a storage effect.
Of course, the subjects do not know how long the list is going to be.
As with Murdock’s fit, certain processing assumptions and parameter
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values are not essential in this case. Rechecking makes little difference.
Setting d = 0 can be compensated for by raising a to .12, with equally
good results. Changing to a Kyax consecutive failure rule, with Ky x =
11, and the other parameters unchanged, gives a fairly good fit, but with
the predicted points in Fig. 10 lying along a line with slightly greater
slope than the observed points. This is easily fixed, however, by slight
changes in the values of the other parameters. All in all, it seems clear
that the predictions of the list-length effects and the effects of presentation
time are the result of the basic structure of the model and not of the
particular parameter values or assumptions used.

In the applications both to Murdock’s data and Robert’s data, no men-
tion has been made of the effects of the interword-association retrieval
routes. The reason is simple. The word cue searches are not needed to
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Fig. 10. Comparison of the predicted and observed probabilities of recall, corresponding to each
of the 20 points in Fig. 8 (or 9).

predict these data (see Shiffrin, 1970). However, the word-cue searches
are crucial for many of the applications to be covered later, and it is
noteworthy that the inclusion of such a process does not affect the predic-
tions. Interestingly enough, we have even found that virtually identical
predictions, for the same parameter values, can be obtained if it is as-
sumed that the rwo most recently recalled words are used as cues along
with context (until Lyx failures accumulate). Such results suggest that a
subject may not have a uniformly optimal strategy of cue selection. They
further suggest that different subjects, or the same subject at different
times, may use different numbers of item cues without much affecting
total recall.

Finally, consider the strictness of the search stopping criterion (the
value of Kyax ). The fact that Kyax was not estimated and yet a good fit
was obtained suggests that the criterion may be shifted, one or two other
parameter values changed slightly, and equally good predictions ob-
tained. This is, in fact, the case. More important, it is one of the great
successes of the model that empirical manipulations designed to change
the stopping rule produce results that are extremely well predicted by the
model, with the only alterations occurring in the value of Kyax. We turn
next to such studies and predictions.
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B. EXTENDED RECALL, REPEATED RECALL,
HYPERMNESIA, AND INTERRESPONSE TIMES

A model for free recall should exhibit several closely related properties:
(1) the criterion for cessation of search should be such that a reasonable
subject could be expected to ‘‘give up’’ at that point; (2) the temporal
point at which time-unlimited search stops should be a point at which few
new items are being recalled (for all conditions); (3) predicted cumulative
recall functions, at times before subjects cease searching, should grow at
a rate similar to that seen in the data; (4) if subjects are induced to extend
their search beyond the point of normal cessation, the number of
additional words recalled should be predictable by shifting the stopping
criterion, or by otherwise altering the model’s stopping strategy in a
manner consistent with the instructions and task demands.

Consider first the stopping rule. When a fotal failure rule is used, even
with a high value of Kyx, it is not obvious that new recalls will be
occurring at a slow rate just before search ceases. In fact, however, even
with Kyax = 30, the output rate is quite low most of the time when search
stops. This is supported by the observation that in the models for the
Murdock and Roberts data, consecutive failure rules of 15 and 11, respec-
tively, give predictions virtually equivalent to those for the total failure
rule. Certainly it seems reasonable that a subject should cease recall after
such a long string of failures (ignore for the moment the fact that we
assume rechecking to take place after this criterion is reached).

In order to gain a clearer picture of the output rates, we give in Fig. 11
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Fig. 11. Predicted cumulative output functions for list lengths of 10 and 40 and presentation times
of 1.0 and 8.0 sec per item. SAM’s parameter values are the same as for Fig. 8, but note that STS
retrieval has been deleted.
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predicted cumulative output functions for four of Robert’s conditions,
with Robert’s parameters. Note that a stop rule followed by rechecking is
assumed to apply to each ‘‘subject’’; the cumulative functions simply
give total cumulated recall over subjects divided by the number of sub-
jects, so that after a long ‘‘time’’ most of the ‘‘subjects’” have ceased
trying to recall, and only a few of the subjects are contributing new recalls
to the cumulative functions. This explains why the lower functions in the
figure reach a nongrowing asymptote—all subjects have stopped retriev-
ing. These predicted functions show a very important property; the rate of
approach to a higher final asymptote is slower. In fact, a considerable
literature attests to just this fact (see Johnson, Johnson & Mark, 1951;
Bousfield, Sedgewick, & Cohen, 1954; Indow & Togano, 1970). Note
that predicted recall grows at a reasonable rate for quite a long time when
the list length and presentation time per item are large. What should be
the most reasonable stopping rule in such a case is difficult to judge.
The predictions in Fig. 11 show what happens when subjects are as-
sumed to use a normal stopping rule, so that search ceases relatively
quickly. It might be asked, what are the predicted cumulative output
functions if subjects are induced to search for very lengthy periods
without stopping. Typical predictions are shown in Fig. 12. The Robert’s
parameters are used, except there is no stopping rule at all. List length is
set to 40, presentation time to 4 sec/word. The dashed curve is an extreme
case in which rno rechecking is assumed, so that almost all samples late in
retrieval use context only as a cue (only after a new recall occurs is there a
brief period, with criterion = Lyax = 3, of cuing with word + context).
The solid curve gives an extreme case in which rechecking occurs
whenever a multiple of 50 samples occurs (unless rechecking is still
underway at that point). Early in search, for this list length and rate,
rechecking actually harms recall (see the portion of the curves between 50
and 100). This occurs because rechecking gives rise to new words very
slowly. On the other hand, rechecking ensures that new retrieval routes
become avuilable. That is, an image may have been sampled but not
recovered with context and words iy, iz, ..., iy as cues; this image can
still be recovered if sampled with a new cue, word iy , ;. Thus the
rechecking curve continues to rise, albeit slowly, until it surpasses the
other curve. This is a general property of the rechecking assumption: it
causes cumulative output functions to continue to grow for longer periods
of time. Finally, it may be interesting to compare the levels of recall after
500 samples under either assumption, about 29 words, with the predicted
level if a total failure rule of 30 is used (see Fig. 8), 21.4 words. For the
rechecking curve, such a level corresponds to about 125 samples.
Clearly, more words are predicted to be available in memory when search
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Fig. 12. Cumulative output predictions for SAM without a stopping rule. Dashed curve: no
rechecking assumed. Solid curve: rechecking assumed every 50 samples. Parameter values as in Fig.
8; list length = 40, presentation time = 4 sec/word.

sttlops with Kyax = 30, but an enormous effort may be required to retrieve
them.

We might now ask whether cumulative dara functions show any of
these properties. Figure 13 shows cumulative functions from Roediger
and Thorpe (1978) who induced subjects to continue to try to recall for 21
min, corresponding to the assumptions used in Fig. 12. Without aftempt-
ing to estimate parameters, is seems clear that real subjects show in-
creases in recall over quite long periods of time, and that the growth
functions are quite similar in form to SAM’s predictions.

Figure 13 also shows what happens when the subject is given three
consecutive recall periods of 7 min each, the subject beginning over in
each new recall period. The cumulative curves shown for this case ignore
any multiply recalled words and simply count new words recalled. On the
other hand, if one counts total words recalled during each 7 min period,
then this total increases in each period, especially for pictures, as shown.
in the top left panel of Fig. 14. This phenomenon has been called
‘‘hypermnesia’’ by Erdelyi and his colleagues (see Erdelyi & Kleinbard,
1978) and interpreted as some sort of ‘‘negative forgetting.”’ Roediger
and Thorpe’s data shown in Figs. 13 and 14 seem to make it clear that the
effect is merely a consequence of more total time available for recall,
along with a result that fewer previously recalled items are forgotten than
new words are recalled.

It is not immediately obvious that SAM should predict this
‘‘hypermnesia’’ result, despite the predicted growth in cumulative output,
since it is difficult to judge intuitively how many previously recalled
words will be predicted to be forgotten in a following recall period. It is
easy to apply SAM to this task, however. Since Roediger and Thorpe
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Fig. 13. Mean cumulative recall of unique items for subjects presented pictures or words and
given either three 7-min tests or one 21-min test (taken from Roediger & Thorpe, 1978).

(1978) use long recall periods (7 min) and report that the hypermnesia
effect is obtained only in this case, we deleted the stop rule from SAM
and simply assumed that 150 samples were made in each recall period.
Rechecking of all previously recalled items within the current recall
period was assumed after each 50 samples. List length was set equal to
40, presentation time per item to 1 sec, and parameters chosen to repre-
sent high strengths (a = .2, b = .1, e =.7) or low strengths (a =.1, b
= .05, e = .7). The other parameters were those for Roberts data (r = 4,
Lyax = 3). The predictions are shown in the middle upper panel of Fig.
14. Under either high or low strength assumptions, the increase across
successive recall periods is observed. The upper right-hand panel shows
similar predictions when the incrementing parameter is greatly increased,
to 3.0.

In order to determine which features of the model are responsible for
the ‘‘hypermnesia’’ prediction, several alternate assumptions were used.
The ‘‘normal’’ version already discussed assumes that an image that has
previously been sampled but not recovered may still be recovered later if
the cue-set contains at least one cue that is new for that image. This
assumption is denoted ‘‘alternate retrieval routes.”” The lower left-hand
panel shows that the hypermnesia prediction is reduced but not eliminated
if the “‘alternate routes’’ possibility is eliminated. In this case, only one
recovery chance is possible for a given image, but incrementing remains.
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The center lower panel shows that hypermnesia is also predicted if incre-
menting is set to .0, but alternate routes remain. However, if both *‘alter-
nate retrieval routes’’ and *‘incrementing’’ are removed from SAM, then
it may be shown that no change in recall is predicted for successive recall
periods. Finally, the right-hand lower panel shows that the amount of
increase is lowered but not eliminated if increments are allowed to take
place anew in each successive recall period (thus an item already in-
cremented to a cue, can receive another increment to that cue in a later
recall period).

One or two final points should be mentioned about the ‘‘hypermnesia’’
prediction. First, if the number of samples per recall period is reduced,
the predicted increase in recall lessens considerably. Such a prediction
accords with data reported by Tulving (1967) and Donaldson (1971)
(although these results are difficult to interpret because the first recall
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Fig. 14. Mean number of words recalled in each of three successive retrieval periods for the same
list. Top left panel: observed data from Roediger and Thorpe (1978). Panels A to E give predictions.
(A) Alternate retrieval routes assumed: solid curve: a=c=.2, b=.1, d=.02, e=f=g=.7; dashed
curve: a=c=.1, b=.05, d=.01, e=f=g=.7. (B) Alternate retrieval routes assumed: solid curve:
a=c=.2, b=.1, d=.02, e=f=g=3.0; dashed curve: a=c=.1, b=.05, d=.01, e=f=g=3.0. (C)
No alternate routes: solid curve: a=c=.2, b=.1, d=.02, e=f=g=.7; dashed curve: a=c=.1,
b=.05, d=.01, e=f=g=.7. (D) Alternate routes assumed: solid curve: a=c=.2, b=.1, d=.02,
e=f=g=0; dashed curve: a=c=.1, b=.05, d=.01, e=f=g=0. (E) Increments apply again each
new retrieval period; top curve: alternate routes assumed: a=c=.2, b=.1, d=.02, e=f=g=.7,
bottom curve: no alternate routes: a=c=.2, b=.1, d=.02, e=f=g=.7.
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includes an STS component). On the other hand, if the number of samples
remains high, but rechecking is eliminated, a large increase across recall
periods is still predicted. Finally, if the assumptions are change.d so that
each recall period ends when a stopping criterion is reached, a fairly large
“‘hypermnesia’’ effect is still predicted (for either type of stopping rule).

The various effects and predictions of this section have all been con-
cerned with cumulative recall over time. We now wish to look at a
finer-grained temporal aspect of recall, interresponse times (IRTs). The
basic data of interest were collected by Murdock and Okada (1970). Each
of 72 subjects was given 20 lists of 20 words each to free recall. Words
were presented visually, and the free recall was spoken and tape recorded.
Two presentation rates were used, 1 word/sec or 2 words/sec, but these
were collapsed together in the reported analyses. Figure 15 .shows the
mean interresponse time between each of the consecutive ordinal output
positions, partitioned separately for each different number of total words
output. Because there were insufficient data when fewer than four or
greater than nine words were recalled, these curves are not shown.

We did not attempt to fit the exact data of Murdock and Okada (1970),
since their data include a STS-component. Simulation of their experiment
would therefore necessitate the prediction of retrieval rates from STS.
Because our main interest is on retrieval from LTS, this did ot seem to
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Fig. 15. Mean interresponse time (IRT) as a function of ordinal position in output. Data par-
titioned according to total number of words recalled (4-9). (From Murdock & Okada, 1970.) Data
include STS retrieval.
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be desirable. We set list length equal to 15 and presentation rate equal to 2
sec per item. The same model was used as for Roberts’ data, except that
the STS-buffer was cleared before recall began, and the rechecking as-
sumptions are slightly altered. Since the subjects in this study used spo-
ken, not written, recall, they would not have all previously recalled items
available. It was therefore assumed that after the Kyx criterion had been
reached, the ‘‘subject’” continues the search via a rechecking process
which uses as cues items recovered subsequent to the Kyx point, even if
these items had already been recalled. It was assumed that the number of
failures in this second phase of search, Kyax., would be set equal to the
total recall in the first phase multiplied by Lysx. This assumption makes
the rechecking effort similar to that assumed for earlier versions of the
model. In phase two, search begins with the context cue, and as soon as
any recoverable item is sampled, switches to it as a cue along with
context. Then this cue set is used until a new recall occurs, in which case
a switch is made to the new item as a cue, or until Ly, failures accumu-
late. In this case, the context cue alone is used in the successive samples,
until a recoverable item is reached. This process continues until Kyaxs
failures are reached.

Figure 16 shows the predictions, based on 5000 simulation runs with
Robert’s parameters. The predicted curves are very similar to the empiri-
cal curves obtained by Murdock and Okada (1970). Several features that
were noted by Murdock and Okada are also evident in the simulated data.
First of all, the interresponse times increase in a positively accelerated
fashion as recall proceeds. Second, for a fixed output position, the interre-
sponse times were shorter the more words there were yet to recall. Finally,
atany given output position the interresponse time is a good predictor of the
number of words yet to recall. Of course these predictions are based on
the particular rechecking assumptions that have been made, and a dif-
ferent set of assumptions would undoubtedly shift the predictions (for
example, without any rechecking or a comparable process the predicted
curves are almost linear, with decreasing slopes toward the right of the
figure). The lesson from this simulation is simply that IRT results like
those of Murdock and Okada are quite consistent with a SAM-like model.

C. CATEGORIZED FREE RECALL: CUING, OUTPUT
INTERFERENCE, TEST ORDER

In categorized free recall the list of words that is presented to a subject
is divided into a number of conceptual categories (e.g., four-footed ani-
mals, professions, tools, etc.). The words belonging to a particular cate-
gory may be presented contiguously (blocked presentation) or in random
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list positions (random presentation). The present theory will be applied to
a blocked presentation procedure only. (In any event, the Tesults men-
tioned by Cohen, 1966, suggest that if subjects are aware of the categori-
cal nature of the list there are no qualitative differences in the gross
results between blocked and random presentation.)

In principle, extending the SAM model to the categorized situation is
quite simple. Just as is the case for context information, it is assumed that
category information is stored as part of each image, and that category
information may be used as a cue. Let us denote an item in a cued
category by using a prefix c, and an item in a different category than that
of the cue by using a prefix nc. Then the SAM model sets the strength of
category cue to c-image to be a linear function of rehearsal time, and the
strength of category cue to nc-image to be equal to a residual value.
Furthermore, there are separate increments for the category to c-image
strength, and the category to nc-image strength, when either of these is
recovered and output in the presence of the category cue. Such a model
has been fit quite successfully to a variety of data from categorized
paradigms.

We have found, however, that not all this machinery is needed to
capture the essence of the mechanisms of the categorized situation. A
much less powerful model is quite capable of predicting almost all the
effects. This simpler model ignores all interitem strengths and retrieval
routes (i.e., items cues are not used). Instead, only context and category
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cues need be considered. It is this model that shall be presented and
utilized in the following sections, since it illustrates the main points
without confusing the issue.

Since we are not concerned with serial presentation position effects in
the categorized task, it is also much simpler to replace the buffer storage
system with a fixed strength assumption. In particular, the context to
image strength is set equal to a times the presentation time for that item,
and the category to c-image strength is set equal to B times the presenta-
tion time. The category to nc-image residual strength is set equal to D.
The increment for context-to-image strength was set equal to ¢ and the
increment for category to c-image strength was also set equal to e.

An excellent demonstration of the power of even this simplified model
to explain the results of categorized studies may be obtained by applying
it to a well controlled study by Tulving and Pearlstone (1966). They
varied three independent variables: (1) list length—12, 24, or 48 list
items, (b) number of words or items per category—1, 2, or 4 items per
category, and (3) type of recall test—either a cued or a noncued recall
test. In noncued recall the subjects were given a standard free recall
instruction, i.e., they were told to write down all the words they could
remember as having been on the list. In cued recall the subjects were
given a list of all the category names and then tried to recall-as many
words as possible. In this experiment the members of each category were
presented in a blocked fashion, preceded by the category name. Subjects
were instructed carefully that they were to remember only the category
members, not the category names. The presentation time was 1 sec for
each item and 3 sec for each category name. The amount of recall time
given was proportional to the list length (1 min for every 12 items).
Following the first recall test all subjects were given a second recall test.
This second test was always a cued recall test. The results for the first test
are given in Figs. 17 and 18 as the solid points.

The application of the model to this data is fairly straightforward. In the
case of cued recall it is assumed that each category cue is used until a
criterion of Lyax total failures is reached (no rechecking). The items are
sampled using both the context and the category cue. The probability of
sampling is therefore proportional to the product of the item-to-context
associative strength and the associative strength between that item and the
category that is tested. The probability of recovery is given by the usual
exponential transformation of the sum of these two associative strengths.
Retrieval of an item outside the category being tested is assumed to be a
failure, on the reasonable basis that a subject always recognized whether
an item belongs to the category being tested. The contextual and category
associative strengths are incremented upon successful recall of an item.
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Fig. 17. Mean number of words recalled in the first recall test as a function of list length and
words per category, for testing with or without category names provided. (Data from Tulving &
Pearlstone, 1966.) Predictions from simplified SAM model, described in text.

Note that due to the assumption of a nonzero residual strength of the
association between a category and an item belonging to a different cate-
gory the model predicts an effect of the number of, and the contextual
associative strength of, the items belonging to other categories.

In the case of noncued recall it is assumed that the subject first samples
one of the items using only the context cue. Upon successful retrieval of
an item the subject will generate (with probability 1.0) the category name
of which that word is a member. Both the context and the category
strengths are incremented. Next, the subject tries to recall items from
within that category until he reaches a criterion of Lyax failures. Contex-
tual cues as well as the category cue are used in this restricted search. As
before, retrieval of an item outside the category tested is counted as a
failure. Thus, this category search is exactly the same as in the case of
cued recall. When the criterion of Lyax failures has been reached the sub-
ject discards the category cue and continues sampling using only the con-
text cue. This goes on until a criterion of Kyax total failures with the
context cue has been reached. Note that failures that are made during
category searches are not counted as part of these Kyax failures. Thus,
recall stops when the subject believes that he can find no more new
categories.

The above model for categorized free recall is similar to the model
proposed by Shiffrin (1970) and Rundus (1973). However, neither of
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these models allows for sampling items outside the cued category. There-
fore, they have difficulty explaining total list-length effects upon within-
category recall, and order effects of testing successive categories in cued
recall (e.g., Smith, 1971; Roediger, 1973).

The model was fit to the data in Figs. 17 and 18 and a good fit was
obtained for the following parameter values: a = 1.2; B = 1.7; D = 0.2;
e = 2.0; Lyax = 15; Kyax = 20. The predictions are also given in Figs.
17 and 18.

Inspection of Figs. 17 and 18 reveals that the advantage of cuing with
the category name decreases with increasing category size (for constant
list length) and increases with increasing list length (for constant category
size). The model predicts these effects because with increasing category
size relatively more categories are accessed in noncued recall, thereby
eliminating the advantage of the cued group. With increasing list length,
however, relatively fewer categories are accessed in noncued recall,
which increases the advantage of cuing.

These data were analyzed by Tulving and Pearlstone (1966) in terms of
the two response measures used earlier by Cohen (1963); category recall
(R.), the number of categories of which at least one member was re-
called, and words-within-category recall (Ry,), the ratio of the total
number of words recalled to the number of categories recalled. Thus, a

n
w
ox
o
g 4o
= —— CUED
g --~- NONCUED
® OBSERVED
o PREDICT
8 3ot ED 4
p
3
g
o
w
x 20 i
"
o
@
w o lor 4
s &0
2 S
2 >
z o 1 I‘ 1 1 1 1 1 1 1
2 12- 12- [2- 24- 24- 24- 48- 48- 48-
) 12 a1 5287 T2 Ta
=

LIST LENGTH (TOP) AND ITEMS
PER CATEGORY (BOTTOM)

Fig. 18. Mean number of categories recalled in the first recall test as a function of list length and
words per category, for testing with or without category names provided. (Data from Tulving &
Pearlstone, 1966.) Predictions from simplied SAM model, described in text.
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category is not considered to be ‘‘recalled’”” when no member of that
category is recalled. Analyzed in this way the data show that the probabil-
ity of recalling a category was higher for the cued group, that this proba-
bility decreased with increasing list length in both the cued recall and the
noncued recall condition, and increased with increasing category size in
both conditions. Naturally (judging by our fit), when the predicted data
are analyzed in the same way, the same effects are obtained. The reasons
why the model predicts these results are evident, if we keep in mind that
sampling within a category is predicted to depend upon the number and
strengths of items in other categories, due to the residual associations, D.
Thus, for example, the probability of recalling an item from a cued
category will go down if there are more items in other categories on the
list.

In seeming conflict with this reasoning is the finding that words re-
called per category having at least one recalled member did not vary much
with total list length (in both the data and predictions). However, this
seeming paradox disappears when the data are reanalyzed in a noncondi-
tional fashion. The possibility of no recalled members from a cued cate-
gory must be taken into account. Figure 19 gives the observed data and
the predictions for items per cued category (with unconditional scoring).
Clearly the list length effect is present in both data and predictions.

One other interesting finding observed by Tulving and Pearlstone
(1966) for the first test is that the probability of recalling a member of a
category, given that at least one member was recalled, was a decreasing
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Fig. 19. Predicted and observed mean number of words recalled per cued category in test one as a
function of list length and words per category. (Data from Tulving & Pearlstone, 1966.) Predictions
from simplified SAM model, described in text.
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function of category size. This is of course similar to the usual list-length
effect in (uncategorized) free recall, and this result is predicted by our
model for exactly the same reasons.

As was mentioned above, Tulving and Pearlstone (1966) gave all sub-
jects a second recall test which was always a cued recall test. They found,
of course, that cued recall showed a large increase over a previous non-
cued recall for the usual reason—the cues gave access to additional
categories. Of greater interest are comparisons among the three cued
tests: test 1 cued, and test 2 cued after either uncued or cued test 1.
Tulving and Pearlstone found test 2 cued after test 1 cued gave recall
practically identical to test 1 cued. However a previous uncued test
seemed to reduce test 2 cued performance. This is illustrated in Fig. 20 at
the top. The differences were not explained by Tulving and Pearlstone.

In the bottom of Fig. 20 we show the predictions when the present
SAM model is applied to the second test. In this application the final test
matrix after the first test (uncued) was for each simulation run the starting
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Fig. 20. Mean number of words recalled in cued recall as a function of list length and words per
category for subjects who were given these cues either on the first recall test, or not until the second
recall test. (Data from Tulving & Pearlstone, 1966.) Predictions from simplified SAM model,
described in text.
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test matrix for the second test (cued). Otherwise the second test assump-
tions were identical to those used for a cued first test (including the
occurrence of new incrementing for items recalled in test 2, regardless of
whether test 1 incrementing had already occurred). Clearly the predic-
tions are matching the main features of the data, but why does a noncued
first test hurt a cued second test? The answer depends upon the context-
item increments that take place in test 1. In test 2 these increments tend to
cause sampling of the previously recalled items in test 1, to the exclusion
of items (and categories) that were not recalled in test 1, especially when
category size is small.

There is one other set of important findings in categorized free recall
that may be considered in the context of our model. These findings
concern cued recall; they show that the probability of recall of a category
member decreases slightly but systematically as successive categories are
cued. This result seems to have been found first (independently of each
other) by Dong (1972) and Smith, D’Agostino, and Reid (1970). More
systematic studies are reported in Smith (1971) and Roediger (1973). In
the experiments of Smith (1971) blocked presentation of categorized
words was followed by cued recall. A significant decline in word recall
for successive categories tested was observed. This output interference
effect was not dependent on the inclusion of the last input-category nor
was it decreased by introducing an interpolated task between study and
test. Thus the results cannot be attributed to a short-term forgetting pro-
cess. More output interference was observed when a long recall time per
category (60 sec) than when a short time (30 sec) was given. In one of
Smith’s experiments (Smith, 1971, Exp. IV) presentation time per item
and category size were varied in a between-list design. More output
interference was observed with longer categories and with a higher pre-
sentation rate. Roediger (1973) varied category size within a single list
and found no effect of category size. Thus, one may conclude that the
effect depends on the absolute number of items previously recalled rather
than on the number of items per category stored in memory.

Roediger (1973) observed that the probability of recall for successively
tested categories decreased in an approximately linear fashion with a
slope of about —.007. Figure 21 shows the predictions of our model for
cued recall for a list of 20 categories of 4 items each. These results are
based on 1000 simulation runs with the parameter values that were esti-
mated from the results of Tulving and Pearlstone (1966). It is evident that
the model predicts this output interference effect. In our simulation we
obtained a slope of —.0063, so the magnitude of the effect is also pre-
dicted quite well.
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Fig. 21. Predicted probability of recall as a function of the output (i.e., test) position of the
category in cued recall. Best fitting regression line is shown. The model assumed 20 categories of 4
words each, and used parameter values equal to those utilized for the fit to the Tulving and Pearlstone
(1966) data (see Figs. 17-20, and the text).

The output interference prediction is due to the incrementing of
context-to-item associations, when there are residual associations. be-
tween category cue and nc-image. Later in the sequence of tested
categories, there is an increasing tendency to sample recalled items from
earlier categories, because their associations to context had been in-
cremented. The model also predicts that the effect will be stronger the
lower the initial strength of the context associations because the increment
after retrieval will than be relatively higher. Thus, the model predicts that
higher presentation rates (i.e., shorter presentation times per item) should
lead to more output interference as was found by Smith (1971). For these
same reasons, our model is consistent with the result obtained by
Roediger (1973) that the output interference effect depends on the abso-
lute number of items recalled previously. '

A similar explanation handles an effect noted by Roediger (1978):
providing some of the category names as retrieval cues increased the
number of words recalled from the cued categories [i.e., the positive
cuing effect observed by Tulving & Pearlstone (1966)], but decreased the
number of words recalled from the noncued categories (i.e., the negative
cuing effect observed by Slamecka and others, see below). In this case,
there will be a tendency to sample the words recalled earlier from the cued
categories, due to incrementing. (Note that such an explanation does not
handle Slamecka’s part list cuing effect, however, as discussed in the next
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section.) Verification of our reasoning comes from another condition in
Roediger (1978): one group was given the category names with the in-
struction not to recall from those categories and another group was given
those names with the instruction to recall especially from those
categories. Relative to a control group a large decrement in the number of
critical words recalled was observed for the second group but not for the
first group. These results show that it is the act of recall that produces the
interference.

If the category cue to nc-image residual, D, is raised, the model pre-
dicts cued performance to drop, but the magnitude of the output inter-
ference effect to remain virtually unchanged. For example, when we
doubled the value of D in the simulation, the recall level in Fig. 21
dropped by 10%, but the slope of the function did not change. One way to
increase D experimentally is to use categories that are more similar to one
another. Roediger and Schmidt (1980, Exp. III) carried out such a study,
and found just this predicted pattern of results. (Roediger & Schmidt,
1980, Exp. IV, showed a similar effect in cued recall of paired associates,
a finding matching the predictions of the theory, as shall be described in
the section on paired associates below.)

To summarize all these findings concerning categorized free recall, our
very simple SAM model, without interitem associations;-proved capable
of predicting all the major results from this paradigm, including cued, and
uncued, and partially cued recall, and the output interference effect.
Furthermore, these results and simulations demonstrate clearly the need
for residual associations between category cues and noncategory items
from the list, to explain list length effects on within-category recall, and
to explain the output interference effect. In addition, the need for incre-
menting is clear, to explain the output interference effect. Thus, although
these factors are not needed in the model to deal with simple free recall of
uncategorized lists, both residual associations and incrementing are
necessary components of SAM. (The basis for interitem residuals will be
discussed later.) )

Finally, one might ask whether additions to our simplified model, such
as word cues and interitem search routes, or recalls from categories dif-
ferent from the cue, can present any difficulties for SAM. Such changes
add quite a few processes and parameters to the model; we have applied
such an extended model to this data, with equal success, but do not
present the results since no new insights are gained. However, we shall
give such an extended version of the model when turning to our next
application, where the two categories in a list consist of (1) random
words, and (2) complex pictures.
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D. FREE RECALL OF PICTURES AND WORDS

The study on pictures and words was carried out and analyzed by Gary
Gillund at Indiana University. We give only a brief resume of the major
points here (see Gillund & Shiffrin, in preparation). Some lists con-
tained only words, others only pictures, and some contained some of
both. The numbers of words and pictures in these various lists were
covaried. In mixed lists, presentation was either blocked, or was alter-
nated as evenly as possible. Arithmetic was used after presentation and
before recall to empty STS. Recall of pictures was obtained by the
method of Shiffrin (1973): the subjects wrote very brief descriptions of
each recalled picture. Then, after recall was completed, all the list pic-
tures were shown to the subjects, who matched their descriptions to the
pictures. List lengths used were 10 and 20, and presentation time was 2
sec per item.

Some of the main results are shown in Figs. 22 and 23. Note that the
usual list length effects were obtained in both pure and mixed lists, but
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also a large effect was obtained for recall of pictures when only the
number of words was varied, and vice versa. This is of some interest
since the words were chosen to be of low imagery value, and the pictures
were complex and not easy to describe succinctly or accurately in words.
The model applied to this case is the basic SAM model for two
categories (pictures and words), but with all residual associations, inter-
item searches, category searches, and so forth, included. The storage
process utilizes a buffer of size 4 for words, and size 1 for pictures;
whenever a picture is presented, the previous buffer contents are cleared;
when a picture is in the buffer a presented word replaces it. Words build
up item-context (a,,) and item-item (b,) strengths as a function of re-
hearsal time; pictures build up item-context strength (a,,) as a function of
rehearsal time. An item’s self-association strength is set equal to the
context strength. Residual associations fill the rest of the test matrix:
picture-picture (d,p), picture~word (dpy), word-picture (dyp), and
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word-word (dy, for jointly unrehearsed words). In addition, it is as-
sumed that a category cue may be used during retrieval. Thus a within
category residual, d.., and a residual from a category cue to an item in the
other category, d., are also assumed.

The retrieval plan is fairly straightforward. When a new item is re-
called, the next cue-set consists of the recalled item, its category, and
context. The search begins with the context cue and a randomly chosen
category cue. Any time a cue-set including a word category cue fails
Luaxw consecutive times, or a cue set including a picture category cue
fails Lyaxp consecutive times, the next cue-set consists of a change in
category cue, and context (no item cue).

When an item is recalled, increments of the cue to image associations
take place: context-word e,; context-picture e,; word-word and word-
category-word, both f,,,; picture-picture and picture-category-picture,
both f;,,; word-picture and word-category-picture, both f,,; picture~
word and picture-category-word, both f,,, (self-increments were equated
to context increments). When the total failures (including those accumu-
lated during item cue searches) reach Kyax, search ceases. No rechecking
is assumed.

One could guess that this model has the power to deal with the data in
Figs. 22 and 23. In fact, many combinations of parameters give-more or
less equivalent fits to the data. Just as with the category data, more
insights into the model would probably be gained by applying simpler
versions of the model. Nevertheless, the assumed processes and parame-
ters represent logically necessary components of the SAM model, and it is
of some use to show the predictions of the complete model. The predic-
tions in Figs. 22 and 23 represent the results of a rough parameter search,
with ay, = .29; a, = .56; by, = .01; dy, = .0305; dy, = .03; dyw = .02;
dpyw = .025; d.c = .0385; dp. = .005; ey, =.03; ¢, = .007; fiow = .03;
foo = -007; fow = fwp = .001; Lyaxw = 3; Luaxe = 4; Kmax = 32. Quite
clearly the model captures the main aspects of the data. It is reasonable to
conclude that complex pictures, and words, are comparable entities that
may be treated -similarly in retrieval (at least within the context of a
SAM-like model).

E. PART-LIST CUING

One of the more remarkable findings in free recall, primarily because it
does not seem consistent with traditional associative theories of memory,
is known as the part-list cuing effect (e.g., Slamecka, 1968, 1969).
Suppose after list presentation that a random subset of the list items is
presented to the subjects in the cued group, who are told to use them as
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cues to aid in recall of the remaining list-items, called ‘‘critical items.’’
The control group is given no cues, and recalls freely, as usual. The
control group actually recalls slightly more critical items than the cued
group. This finding is robust, being found consistently in random lists,
and within categories of categorized lists.

The mystery of the control group advantage was first discussed by
Slamecka (1968, 1969). He argued that at least some of the critical items
that were not recalled by the control group should have been recalled by
the cued group due to the presence of cues that would not have been
retrieved by the control group. This argument depends upon the formation
during storage and use in retrieval of interitem associations. Slamecka
and many later theorists therefore concluded from the part-list cuing
effect that such interitem associations could not have been both stored and
used in retrieval.

This reasoning is not, however, correct. We shall show next that a
prediction of the part-list cuing effect is inherent in SAM-like models,
despite the heavy use of interitem associative structure that is made in
such models. In fact, it is this very structure and its use in retrieval that
produces the effect. This entire problem is discussed in all possible var-
iations, and the literature thoroughly reviewed, in Raaijmakers and Shif-
frin (1981). In this article, therefore, we shall summarize-these matters
in very brief fashion.

One of the most surprising findings related to the part-list cuing effect
concerns the effect of increasing the similarity of the list items to each
other. Slamecka (1968, Exp. VI) used three lists: (1) 30 rare words; (2) 30
common words; (3) a list consisting of ‘‘butterfly’’ and 29 of its most
popular associates. The control groups recalled 5.58, 7.04, and 8.50
critical words, respectively. The cue groups recalled 4.70, 6.79, and 8.97
critical words, respectively. Thus increasing similarity almost doubled
recall, while only slightly altering the basic effect.

The SAM model will now be fit to an idealized part-list cuing
paradigm. We assume that 30 words are presented (of varying interitem
similarity in different lists), followed by arithmetic. The control group
free recalls as usual. The cued group is given 15 randomly chosen words
from the list, and told to use them to aid recall of the remaining words.

The model for the control condition is identical to that used for
Robert’s data discussed earlier; even the parameters are identical, except
that the interitem strength parameter, b, is systematically varied for dif-
ferent lists. The model for the cued condition is almost the same, except
that the subject is assumed to use the provided cues before reverting to the
normal search. In particular, each provided cue is used in the cue-set,
along with context, until Lyx failures are reached. A recovery of another
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cue word is not counted as a failure, except on the second and subsequent
recoveries of the same cue word (to make the cue condition comparable to
the control condition). Recalled items during this phase of cued search are
simply ‘‘written down’’ but not used as cues themselves. If Kyax is not
reached when the provided cues are used up, then normal search com-
mences, as in the control condition. When Kyax failures are reached,
then all previously recovered items (whether cues or critical items) are
rechecked. All parameters are the same as in the control condition.

The predictions for the cued and control conditions, for various values
of the interitem strength parameter, b, are-shown in Fig. 24. Note that
recall is predicted to double as b increases, but the control group advan-
tage decreases only slightly over the same range.

In Raaijmakers and Shiffrin (1981), these predictions are exhaustively
explored, through numerous versions of the SAM model. The basic pre-
dictions hold without incrementing, without rechecking, regardless of the
particular rechecking assumptions made, whatever the value of Kysx or
Lyax (within reason) and regardless of the particular stopping rule used,
among other variations. Surprisingly, the control group advantage occurs
in the face of a factor favoring the cue group: when an item-cue plus
context cue are used, recovery probability is higher than when a context

o——e control
x— —x cued

CRITICAL WORDS RECALLED

0 1 1 L i 1
.2 4 K 8 1.0

INTERITEM STRENGTH PARAMETER
Fig. 24. Predictions for the part-list cuing effect for an idealized paradigm, as interitem strength
parameter, b, is varies. List length is 30, number of cues is 15, presentation time per word is 2 sec; d
is set to equal .2b. Other parameters as in Fig. 8.
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cue is used alone; since the cue group uses more item searches, it obtains
an advantage. For example, if recovery probability is set equal to.75
regardless of the cues used, then the cued group inferiority increases by
about one-half a word.

What then explains SAM’s prediction of the part-list cuing effect? The
main factor is illustrated by Fig. 25. Suppose that LTS after presentation
of 12 words consists of 4 triads, unrelated to each other but so strongly
interrelated that recall of any one item in a triad leads to recall of the
entire triad. The critical items and cues are indicated in the figure. Sup-
pose that during search of this structure, the control and cued groups
sample an equal number of triads (a simplification for the sake. (?f the
argument). The cued group’s sampled triads will all contain a minimum
of one cue word, and hence a relatively small number of critical words.
The control group’s sampled triads, on the other hand, will often contain
no cue words and hence be relatively rich in critical words. Note well that

Fig. 25. A simplified associative network for a 12-word list stored as four triads. The six experi-
menter provided cue words have images denoted Q. The six remaining critical items are denoted L.
The arrows denote associations between images. Each image has an association to context, not
depicted. A context sample can access a triad rich in critical items (e.g., the triple-I triad). The cue
word plus context samples can only sample triads relatively impoverished in critical items, since each
such triad must contain at least one cue.
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this effect depends upon both a nonuniform structure in LTS, and also
extensive and effective use of interitem search.

SAM’s prediction of the part-list cuing effect is thus dependent upon
the fact that both groups make extensive use of interitem search. The
control group uses a mixture of two types of cue sets; one type consists of
context cues only, while the other type consists of both a context cue and
a word cue that was generated by the subject earlier in the search. On the
other hand, the cue group usually uses just one type of cue set, containing
both a context cue and a word cue provided by the experimenter. The
control group is superior under these circumstances for the reasons given
above. Strangely, then, the control group advantage is the result of just
the interitem structure and interitem retrieval routes that previous theorists
have argued must be ruled out.

We mention, finally, that several other findings in part-list cuing are
predicted by SAM. It has been found (especially in categorized lists) that
increasing the number of provided cues slightly increases the control
group advantage (e.g., Slamecka, 1968; Roediger, Stellon, & Tulving,
1977; Roediger, 1974). To apply SAM, we reduced Lyax to 2 and raised
Kuax to 50, to ensure that all provided cues would always be used, and
studied the predictions as the number of cues from a 30 item list varied
from O to 25. The predictions (all other parameters as in Fig. 24)-are given
in Fig. 26. Clearly the model predicts a slight, almost linear, decrease as
the number of cues increases.

A version of SAM has also been applied to the categorized list
paradigm, in which cues may be provided from each category. Fur-
thermore, these cues may be ‘‘extra list,”’ from the relevant category, but
not on the list. Bruce Williams at Indiana has applied the model to this
situation. The model is similar to, and an extension of, the model fit by
Gary Gillund in Section III, D to the two category situation. It is described
in Raaijmakers and Shiffrin (1981). We show here the results only when
the model was fit to data of Watkins (1975, Exp. 1). Figure 27 gives the
data and predictions. Clearly the effects of number of cues and extra list
cues are both well predicted by SAM.

One effect found by Mueller and Watkins (1977) could not be predicted
by SAM, despite variations in parameters and assumptions. This effect
was the fact that cues from categories other than the tested category did
not produce a disadvantage in comparison with the control condition. For
assumptions and parameter values which would produce a cue condition
disadvantage for within-category, within-list, cues and for within-
category, extra-list cues, a disadvantage was also predicted for the extra
category within-list cues. Thus the fact that a particular version of SAM
contains a profusion of parameters and processes does not necessarily
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Fig. 26. The same model as in Fig. 24, with b=.10, Lyax=2, Knax=50. The probability of
critical word recall is given as a function of the number of experimenter-provided cues (list length =
30).

reduce the testability of the model. Why does SAM mispredict the extra-
category cuing result? We suggest that subjects realize that-the cues are
from a different category, and thinking such cues to be worthless, ignore
them. We suggest that a disadvantage would appear if only the subjects
could somehow be induced to use the provided cues.

F. PAIRED-ASSOCIATE PARADIGMS

The reader will undoubtedly have noticed that the model developed for
free recall contains all the ingredients necessary to predict cued testing of
paired associates. We have in fact embarked upon an extensive research
program in which paired associates are presented and tested by various
methods (free recall, cued recall, recognition). In this article we will
present only the first of these studies, and that in brief fashion (see
Raaijmakers, 1979, for additional details).

The study was a natural generalization of the simple free recall
paradigms that have been discussed. Pairs of items (paired-associates,
denoted PA) were included in lists along with single items (denoted FR,
for consistency with the previous studies). A single trial procedure was
used, so each word was seen only one time. The 10 conditions were:

Number of PAitems: 5 5 15 15 5 15 30 0 0 O
Number of FR items: 10 30 10 30 0 O O 10 30 40
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Fig. 27. Predicted and observed probabilities of critical word recall in a category, for the control
condition, and for the intralist and extralist cue conditions, each with two or four cuc\s,\(Data from
Watkins, 1975.) The model is described in Raaijmakers and Shiffrin, 1981; parameters: list length =
36; words per category = 6; presentation time per word = 3 sec; r = 4; Kyax/category = 12; Lyax
= 3; a = ¢ = .38; b= .38; item-category strength per sec = .38; category-cue and list-word-cue
residuals to words on list = .1; all increments = .36; residual strength of extralist cues to list itemns in
same category = .03; product of residual strengths when self-sampling an extra-list cue = 2.2.

(Note that the number of PA items is given in terms of the number of
pairs; the number of words is therefore given by twice this number.) PA
pairs and FR items were randomly mixed. For each condition, half the
subjects were first given cued testing of the PA items (paired-associate
testing), followed by free recall of the FR items; the other subjects were
tested first on the FR items (free recall testing), followed by cued testing
of the PA items. Subjects were not told before study of a list which items
would be tested first. The words were presented visually, a single word
for 2 sec, a pair for 4 sec. Paired words were tested either in a forward
manner or in a backward manner: if the pair was A-B it was tested either
as A-? or as 7-B.

Subjects were asked to allot an equal amount of effort in studying each
word. The instructions emphasized that they should try to link together
the two members of a word pair into a single unit, by forming a mental
image or by using some kind of verbal code. After presentation of the list
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a 20-sec arithmetic task was given to eliminate short-term effects. A
written recall procedure was used. Single words were tested using a 2-min
free recall procedure, paired words were tested with a paired-associate
testing procedure. In this case the subjects had 4 sec to write down their
answer.

Figure 28 in the top panel shows the effect of list length on recall of the
PA items and the FR items. These data are averaged over order of testing
and over testing with the A member and with the B member of the A-B
pair. It is evident that the results are quite consistent. In free recall testing
the probability of recall decreases not only as a function of the number of
FR items but also as a function of the number of PA items on the list. A
similar list-length effect is observed for the PA items, and again the
probability of recall decreases when other items are mixed in the list. In
contrast with the word-picture study, where recall was not directed to one
category or the other, the present ‘‘cross-category’’ list length effects take
place even though recall is directed specifically to either FR or PA items.
The results are similar to those found in cued recall of categories, where
recall depends upon the number of items in the other categories.

Figure 29 gives the effects of test order. The main result to note here is
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Fig. 28. The effect of the number of single words (FR) and the number of words pairs (PA) on the
probability of recalling these two types of items. Predictions based on the SAM miodel described in
the text.
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Fig. 29. The effect of the order of the FR and PA tests upon the probability of recall of each type,
partitioned according to the number of items of the other type. Predictions based on the SAM model
described in the text.

that free recall of the FR items is only slightly reduced by a prior cued test
of PA items (about .02 reduction in probability of recall, overall). On the
other hand, cued recall of PA items is considerably reduced by a prior free
recall test of FR items (about .08 reduction in probability of recall, over-
all).

The final results to which we wish to call attention are given in Fig. 30;
averaged across all conditions, this figure gives the overall probability of
cued recall of PA items, broken down by test quartiles. That is, this figure
shows that cued recall probability drops slightly as the test position of the
pair is delayed.

Applying SAM to this study is quite easy, since all the groundwork has
already been laid in the models for free recall. The storage assumptions
are straightforward. Each pair of PA items clears the buffer. Each FR
item clears the buffer of PA items, but adds to any FR items already in the
buffer (up to the buffer size, r: then one of the previous buffer members is
deleted). A PA pair builds up item-context strength (parameter = ap,)
and interpair-strength (parameter = bp,) as a function of rehearsal time
(always 4 sec in this case). An FR item builds up item-context strength
(parameter = apg) and item-item strength (parameter = byg) as a func-
tion, respectively, of rehearsal time, and of joint rehearsal time. Note in
each case that if there are m individual words in the buffer together for ¢
sec, the rehearsal time for any word, or any pair of words, is equal to #/m.

The remainder of the test matrix is filled with various residual associa-
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Fig. 30. Predicted and observed recall probability of PA items, for all list types lumped together,
as a function of test quartile. Predictions based on model described in text.

tions. Any item’s self-association strength was set equal to its context
strength. To keep things simple, all strengths not mentioned above were
set equal to a common residual value, d.

Finally, various increments are assumed after a successful recall. Re-
call of an FR item is followed by increments of epy for the-context and
self-strengths, and frg for the interitem strength if an item cue is used in
the cue-set. Recall of a PA item is followed by an increment of ep, for the
context and self-strengths (and presumably by an increment of fp, for the
interitem strength, but this parameter is never needed in this
application—see below).

Since intrusions of PA items in free recall, or FR items in cued recall,
were very rare, we assume that any sampled and recovered item can be
classified correctly as to type. Hence any sample of a ‘‘wrong’’ type
during search is counted as a failure (and no incrementing occurs). With
this proviso, the retrieval model for free recall is identical to that de-
scribed for, say, Robert’s data. For cued recall, it is assumed that each
sample is made with both context and the provided item cue, and search
ceases when Lpamax failures is reached (since only 4 sec were provided
by cued recall, Lpayax Was arbitrarily set to 1.0). Note that any increment
between a PA cue and the correct response has no effect within this
model, because such a cue will never be used again, either in PA or FR
testing.

Only a very limited parameter search was carried out, but a reasonably
adequate fit was obtained for the following values: Kyax = 30; Lyax =
3, Lpamax = 1; r = 4, apr = .30; apa = 18; bFR = .30; pr = .60; d
=.035; err = 3.0; epy = .80; frr = 3.0. The predictions are shown in
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Figs. 28, 29, and 30. It seems clear that the SAM model, essentiaily the
same SAM model used for free recall, can handle the major findings of
cued PA recall, even for the case when FR items and PA pairs are mixed
within the same list. The list-length effects, the effects of order of PA and
FR testing, and the effects of test order in PA testing are all well handled
by the model.

In many ways, the theoretical conclusions to be drawn from this study
and the application of the model parallel the conclusions reached from the
categorized free recall situation. The list-length effects that cross test
type, and that appear in cued recall, illustrate the importance of residual
associations between items not rehearsed together, and even between
items of different types. The effects of order, in both Figs. 29 and 30,
illustrate the importance of the incrementing process. Of course, the basic
phenomena of cued testing require interitem associations and search
routes. Finally, we regard it as a strong point in favor of the model that a
system developed for free recall can handle so accurately these various
results from cued testing of paired-associates.

IV. General Discussion and Final Comments

We begin by calling attention to a problem that Smith (1978) has
termed ‘‘the sufficiency/transparency tradeoff.’’ The problem is that as a
Tong-term memory model (especially a simulation model) becomes more
and more complex, and increasingly encrusted with special assumptions,
it gains the ability to predict a good deal of data (sufficiency), but be-
comes increasingly opaque to external observers (including the model’s
creators). That is, it becomes virtually impossible to extract the essential
principles from the mass of details and interactions that comprise the
model, and it is often impossible to anticipate what the model will predict
for a given manipulation. ‘

We have been quite concerned, even for our relatively simple model,
with the ‘‘transparency’’ problem, and have adopted a series of measures
to deal with it. First, we do not attach much significance to the fact that
the model can fit any single study or type of study. Rather, we require the
model to apply to many different tasks and types of tasks, with essentially
the same set of assumptions, and the same set of basic mechanisms.
Second, if the values of parameters are important to predict certain ef-
fects, those values should be consistent with the model’s rationale and the
task requirements. Third, the model should have testable aspects—there
should be some results that the model cannot fit (the part-list cuing effect
is an example of an inherent prediction of our model—in fact, we saw that
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the failure to attain a cue condition disadvantage for extracategory cues
could not be handled by the model). Fourth, and perhaps most important,
the model must be made understandable to the observers. We have at-
tempted to do this by carrying out extensive explorations of the ‘‘assump-
tion space’’ of the model, systematically adding and removing various
processes, and examining the shifts in predictions that result. Our model,
unfortunately, is so stochastically interactive, that it is difficult to make
accurate intuitive predictions even for very simple combinations of as-
sumptions. We have seen this to be the case especially when applying the
model to ‘‘hypermnesia’’ and *‘part-list cuing.’” In light of our theoretical
explorations, we hope the predictions of these effects, and indeed the
basic workings of the model, have been illuminated.

Let us review now the basic tasks to which the model has been applied.
Serial position effects, but more important, list-length and presentation
time effects in single-trial free recall were easily handled. The temporal
aspects of free recall were dealt with next, including the effects of instruc-
tions to extend the period of active retrieval, cumulative response curves,
repeated recall, the effect known as ‘‘hypermnesia,’” and interresponse
times. SAM was applied next to the basic phenomena in categorized free
recall, not only handling the large effects of cuing, of category size, or
number of categories, of mixtures of pictures and words, of the number of
categories upon within category recall, and of the test order of categories
(the output interference finding), but also explaining the subtle effects of
cued recall following noncued recall. The model was next shown to
predict the part-list cuing effect in its sundry variations, an important
result since previous associative models have had difficulty dealing with
the finding. Furthermore, the explanation was not post hoc; the model for
free recall was applied ‘‘intact’’ to the part-list cuing paradigm, and the
prediction proved to be an inherent property of the model, occurring in
almost all model variations. Finally, the model was shown to predict cued
recall of paired associates, in lists containing both paired-associates and

single items. Since the model for free recall utilized extensive amounts of

item-cuing, the extension to the paired-associate situation required no
new assumptions. The predicted effects include those of list length,
number of PA items, number of FR items, sequential effects during cued
testing, and the relationship of free recall to cued recall for different test
orders.

These are not the only tasks to which the model has been applied, but
space restrictions prevent our presentation of these other paradigms. In
brief, they include a variety of other paired associate tasks, and several
recognition paradigms. Recognition may well involve an initial judgment
of ‘‘familiarity,”” perhaps based on the value of the denominator of the

Probabilistic Search of Associative Memory 259

sampling equation. If familiarity does not lead to a response, however,
then the rest of the search is treated similarly to that for recall.

Let us conclude by reprising the important features of our retrieval
theory. An associative retrieval structure and cue-dependent retrieval are
essential, but are common to many theories. The sampling assumptions
are the key to the present approach, in several different ways. First, the
fact that sampling is probabilistic allows for a considerable degree of
resampling in certain circumstances. Such resampling of previously sam-
pled images is the basis for stopping the search, and hence an important
contributor to the limitations upon retrieval. Second, the sampling equa-
tion [Eq. (1)] provides an explicit basis for combining cues. That is, the
multiplication of strengths in an additive ratio rule provides a means of
focusing the search when necessary or desired, and allows SAM to pre-
dict cued or free recall with equal facility. Turning now to recovery, it is
obvious on logical and empirical grounds that some type of recovery rule
is necessary (for example, the effects on free recall of doubling presenta-
tion time would be most difficult to handle without a strength-dependent
recovery probability).

These factors notwithstanding, we make no claim for the uniqueness of
the particular mathematical forms of Eqgs. (1) and (2). These functions
were chosen for simplicity, convenience, and historical factors, but-slight
variations in their forms would undoubtedly lead to an equally good
description of most of the data. It is our position that the basic framework
of the model has enough power to handle the data that small variations in
quantification will do little to degrade the quality of the predictions. A test
of this position must await further empirical and theoretical work.

Let us turn now to some of the subsidiary assumptions of SAM. The
inclusion of residual associations makes our retrieval network ‘‘com-
pletely”’ interconnected, a rather novel feature. Such interconnectivity is
needed to explain list-length effects in various types of cued recall, in
both the category and paired-associate paradigms. Incrementing repre-
sents learning effects that occur during retrieval; it is essential to explain
various types of test-order findings (as in successive testing of categories,
for example). Still other factors in our model do not seem crucial for
predicting present data, or have not yet been explored theoretically. Such
factors include the conditionalization rules that apply after resampling of
the same image and rechecking.

Finally, there are subject controlled strategies in our theory, such as
search termination rules, and choice of cues at various stages of the
search. We have tried to include reasonable strategies in our simulation,
but are convinced that a theory would be very weak if its predictions
depended in important ways on the choice of particular strategies (since




260 Jeroen G. W. Raaijmakers and Richard M. Shiffrin

different subjects probably choose different strategies, and the same sub-
ject probably changes strategies from time to time). It is for this reason
that we have expended considerable effort in this article showing the
effects upon the predictions of changing strategies. It is one of the suc-
cesses of this model that the basic predictions are quite insensitive to
‘“‘sensible’’ alterations in retrieval strategies, but thai manipulations ex-
pressly designed to change strategies (such as encouragement to continue
search) have effects in the data that are predicted through simple manipu-
lations of the appropriate parameter in the model.
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