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A Note on the Measurement of Primary Memory Capacity

Jeroen G. W. Raaijmakers r
‘University of Nijmegen, Nijmegen, The Netherlands

It is argued that the modification of the traditional Waugh and Norman (1965)
method for the estimation of primary-memory capacity proposed by Watkins
(1979) is not consistent with the assumptions of the modal two-store model. An
alternative method is described that does not incorporate the assumption, implicit
in the method proposed by Watkins (1979), of independence between the prob-
abilitjes of recall from primary and secondary memory. It is shown that the most
general version of the new method is prone to error because the number of
parameters to be estimated equals the number of data points. Two simplified
_solutions are described, one based on a geometric decay function for the prob-
ability of recall from primary memory and one based on the general buffer model
described by Phillips, Shiffrin, and Atkinson (1967). It is shown that this method.
will give a valid estimate of primary-memory capacity; that is, when applied to
simulated data with a known buffer capacity, it will generate an estimate of

In recent years the problem of the measurement
of primary-memory capacity, first discussed by
Waugh and Norman (1965), has received re-
newed attention (Martin & Jones, 1979; Watkins,
1974, 1979). In this article I confine myself to the
free-recall paradigm, since that is the context in
which those measurement procedures have been
most frequently used. The goal of these techniques
is to derive from the recency and asymptotic parts
- of the serial position curve an estimate of primary-

memory capacity.

" Waugh and Norman (1965) assumed that an
item presented in serial position i could be recalled
from primary memory or from secondary memory
(or both). Specifically, they assumed that the
‘probability of recalling item i from secondary
memory (SM;) was independent of the probability
of recalling that item from primary memory
(PM,)). Furthermore, they assumed that items still
in primary memory at the time of recall were al-
ways recalled. The probability of recalling the
item presented in serial position i (R;) is then glven
by

Hence, g
R, — SM, :
M, = ———— . 2
PM, | —SM, (2)

Waugh and Norman assumed that SM; was con-
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primary-memory capacity that corresponds quite closely to the known value.

stant for all serial positions and could be estimated
from the probability of recall for the middle, pre-
recency part of the serial position curve (R,); that
is, !

SM;= R, for all i

Primary-memory capacity (r) is defined as the

-sum of all PM;’s from the recency and asymptotic
parts of the serial position curve. Dlsregardlng the

prrmacy part, we may define

r=2PM,-,

where L refers to the item presented last. ‘
One problem with the Waugh and Norman

. method is that it does not take into account the

phenomenon of negative recency. Negative re-
cency refers.to the observation. that the items at
the final list positions are sometimes less well re-
called than the items in the middle positions. This
phenomenon was first observed by Craik (1970)
in a delayed-recall procedure. In this procedure,
a number of lists are presented and tested in an
immediate-recall test. At the end of the session
the subjects are unexpectedly asked to recall as

‘many words as possible from all lists presented

during the entire session. This negative-recency -
effect is usually explained by the assumption that
the subject stops rehearsing the items when testing
begins. Hence, the final list items are not re-
hearsed as much as the items in the prerecency
part of the list. Given the assumption that amount
of rehearsal and probability of recall are corre-
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lated, it follows that the final items are less well
recalled. That negative recency is not usually ob-
served when a distractor task is interpolated be-
tween presentation and testing of a list is probably
due to continued rehearsal of the recency items
during the course of the intervening task itself.
In this procedure, negative recency only occurs
when the distractor task is difficult and very long
(see Gardiner, Thompson, & Maskarinec, '1974).

The occurrence of negative recency leads to an
underestimation of primary memory capacity
when the traditional Waugh and Norman method
is used because SM; is overestimated for items
near the end of the list. Watkins (1974) proposed
a modification of Equations 1 and 2 that was sup-
posed to overcome this problem (in addition to
correcting for nonindependence between PM; and
SM; due to failure to encode the item). However,
Martin and Jones (1979) correctly pointed out
that this was not true and that in fact no adjust-
ment had been made for negative recency. In re-
sponse to this critique, Watkins (1979) presented
a further modification that does take negative re-
cency into account. The solution proposed by
Watkins (1979) supposedly follows directly from
the assumptions of the modal two-store model
underlying the Waugh and Norman procedure.
As described previously, the two-store model pre-
dicts negative recency because the final list items
will not have been rehearsed as much as the other
items. Watkins (1979) assumed that this would
lead to the following conclusion:

Put somewhat more formally, the average amount of
rehearsal—and therefore SM;,—for items presented in
"a given recency position is proportional to the length of
stay in primary memory by the time recall is signalled,
which in turn is proportional to the sum of PM; at its
own and each subsequent serial position. (p. 446)

In the example given by Watkins (1979, Table
1) the following equation for SM; was used:
L L
SM; = R. 2 PM;] 2 PM;. (3)
J=i j=1
In this equation, serial position L corresponds to
the item presented last (i.e., the most recent one).
Substitution of Equation 3 into Equation 1 gives

the estimation equation used by Watkins (disre-
garding for the moment the correction proposed

to account for possible failures of encoding). Al-

though Watkins did not mention how this equa-
tion was derived from the assumptions of the two-
store model, it is likely that it was based on the
following assumptions:

1. The probability distribution for the number
of trials that item i has been in primary memory
from its presentation until the beginning of recall
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is given by
P(nl'?j)szL—j'Fl lgng'—i"i_l,

hence,
P(n; =])
1 - PM, j=0
= 4 PM;_j,, — PM;; l<j<sL—i (4)
PM,; ' j=L—-i+1

This equation is based on the assumption that an
item in primary memory at the beginning of recall
is always recalled and that once an item leaves
primary memory it never returns. Hence,
PM_;, is equal to the probability that an item
stays at least j trials in primary memory. Note
that it is assumed that this distribution is the same
for all items except that it is truncated at a dif-
ferent point (since the item presented in position
i cannot have been in primary memory for more
than L —i+ 1 trials). The average number of
trials in primary memory is then given by
L—i+1

By = 2 POy =)= % APMuoper

= PM, )+ (L—i+ 1)PM;= 2 PM;. (5)
1=

2. The average probability of recall from sec-
ondary memory for a given item i is proportional
to the average number of trials that item 7 has
been in primary memory (E[#;]). Thus, for some
constant c, : :

SM, = ¢+ E(n;). (6)

According to the two-store model, PM,; =0 for
items chosen from the middle, asymptotic part of
the serial position curve. For those items, SM, is
equal to R, the probability of recall for the middle
section of the serial position curve. It follows that
for items in the asymptotic part, E(n,) is equal to

L
> PM;

Jj=1

(since PM; = 0 for all j < i). Hence,

L
c=R.,/ 2. PM;. (7
=1
Substitution of Equations 5 and 7 into Equation
6 gives the formula proposed by Watkins (1979).
However, Equation 3 does not follow from the
assumptions underlying the two-store model. To
see this, it is helpful to take a closer look at Equa-
tion 1. In this equation SM; may be interpreted.
as the probability of recalling item i from sec-
ondary memory, given that it is not recalled from
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primary memory. Let R; be the event that item
i is recalled, and P, the event that item { is in
primary memory at the time of recall. Note that,
since items in primary memory are always re-
called, P(P,) = PM, Equation 1 may then be re-
written as follows: ' '

P(R) = P(R,N P;) + P(R;, N P)
= P(P) + P(Rilpi)P(Pi)

= P(P) + [1 = P(P)IP(R|P). (8)

Hence,
SM,' = P(Rllpi)'

By using Equation 3, Watkins (1979) implicitly
assumed that the probability of recalling item i
from secondary memory was independent of
whether or not that item was recalled from pri-
mary memory. That is, the formula used by Wat-
kins for SM; should have been equal to the prob-
ability of recall from secondary memory given
that item i is no longer in primary memory at the
time of recall. However, E(n,) equals the expected
number of trials in primary memory, regardless

of whether or not item 7 was still in primary mem-

ory at the time of recall. Thus, it was assumed
that

E(niIPi) = E(ny),

and this implies that the number of trials in pri-
mary memory was assumed to be independent of
whether or not item { was recalled from primary
- memory. It should be evident that this indepen-
dence assumption cannot be true given the re-
hearsal assumptions described previously. For ex-
ample, suppose that primary-memory capacity
equals 4, a list of 20 items is presented, and at the
time of recall the item in Position 10 is still in
primary memory (and hence is recalled from pri-
mary memory). In this case the probability of
recalling this item from secondary memory would
be much higher than if it had remained only, say,
4 “trials” in primary memory. Conversely, if the
penultimate item is no longer in primary memory
at the time of recall, it must have been immedi-

ately kicked out of primary memory; hence, it will.

be registered only weakly in secondary memory.

A second point that should be noted about
Equation 3 is that it is based on the assumption
that the average probability of recall is propor-
tional to the average length of stay in primary
memory. In the framework of a two-store model
a more natural assumption would be that the
probability of recall from secondary memory is
proportional to the number of trials that the item
spent in primary memory. Superficially, this
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might seem to be equivalent to the assumption
made by Watkins. This is not the case, however.’
Since the probability of recall cannot exceed 1.0,
the proportionality assumption must take the fol-
lowing form (where SM;, denotes the probability
of recalling item i from secondary memory given
that it has spent # trials in primary memory):

an n<l/a

1.0 nzi/a ©)

SM;, = J[

From Equation 9 it follows that the average prob-
ability of recall from secondary memory is not
proportional to the average number of trials in
primary memory. In the next sections I show how
one can derive a theoretically better founded pro-
cedure for the estimation of primary memory ca-
pacity based on the assumptions of the modal two-
store model. ‘ ‘

A New Method for the Estimation
of Primary-Memory Capacity

From Equation 8 it is evident that in order to
calculate the probability of recall from secondary
memory one needs the distribution for the number
of trials that an item has been in primary memory
given that it is no longer in primary memory at
the time of recall. Assuming Equation 4, this
probability is given by

P(n; ZJIP.)

(1 - PMD)/(1 ~ PM) j=0
= (PML—jJr»l - PM; )/

(1-PM) IlsjsL—i

Note that because an item that has left primary
memory never returns to it, P(n; = j and P;) =

P(n, = j). Under the assumption that SM;, = 0,
Equation 8 may be rewritten as

P(R,) = PM, -+ (1 - PM,) ?j SM,-,jP(n,- :_]lp,)

I—i ‘ ‘
= PM;+ 2 SM, {(PM,_;,, — PM; ;).
i=1 ' :

(10),

Since Equation 10 contains too many unknown
parameters, it is of little use unless some restric-
tions are made. Because our aim is the estimation
of the PM’s, these restrictions will have to involve
the specification of SM;, in terms of the PM/s

- and R,, the probability of recall at asymptote.

The simplest assumption is that SM;, is a linear
function of n:
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an+ B n<(l-8)/a
1.0 n>(1-p3)a

The parameters o and 8 are assumed to depend

s, =4 (in

on R, and hence on experimental parameters such

as list length and presentation time per item. Such
a linear assumption agrees qulte well with the

P(R)
L—i
PM,+a 2
j=1

= PM,""’C! 2
j=1

L—i

P>

j=m+1

j(.PML_j.H - PML_j) l = L

J'(PML—‘,'H - PML—j)

(PML_j+] - PML_j) i <L

Since
L—i

> (PML—j-H

j=m+i

“PML—j):PML—m“PM.',
it follows that for all values of i < L — m, P(R))
is a constant equal to P(R; - ,,). Hence, P(R; _ )

should equal the asymptotic probability of recall,
R.. Thus,

R.=PM; , + « Zl J(PMy_jy — PM,_)). (13)
P
Since
L—k )
Z j(PMy-jr1 — PMy-)
=
Z PM; = (L - K)PM,, (14)
j=k+1
Equation 13 reduces to
L .
R =PM, ,+a 2 PM;
j=L—m+1
—amPML_m. (15)

Note that when PM; _,, = 0 (and thus PM; = 0
for all j < L — m), « is equal to R./r (Equa-
tion 7).

Before applying these equations to estimate
primiary-memory capacity, one additional con-
straint on the parameters PM; must be considered.
From Equation 4 it is evident that PM; must be
a monotonically increasing function of 7 (other-
wise P{n; = j] might become negative). It can be
easily derived from Equation 12 that PM, is an
mcreasmg function of i if and only if P(R;) is an
increasing function of i. Hence, if the observed
probabilities of recall are not perfectly monotonic
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results of overt rehearsal experiments (see Brodie
& Murdock, 1977; Rundus, 1971; Rundus &
Atkinson, 1970). However, Equation 10 still con-
tains one parameter too many. Therefore, some
restriction on « or § is necessary. Consider the
restriction 8 = 0. In this case, Equation 11 reduces
to Equation 9. Substitution of this equation into
Equation 10 gives the following result: '

‘m, where m equals the integer part of 1/a

(12)

(due to error), the parameters PM; cannot be es-
timated in such a way that the predicted proba- .
bilities of recall are all equal to the corresponding
observed probabilities. An obvious solution is to
estimate the PM; in such-a way that the predicted
probabilities give a least squares fit to the data.
Fortunately, there is a well-known solution to this
problem. It involves applying Equation 12 not
directly to the observed probabilities but to a set
of monotonic probabilities that have a least
squares fit to the observed pI‘ObabllltICS This set
of monotonic probablhtles is obtained by mono-
tone regression, that is, by averaging those ob-
served probabilities that violate monotonicity (see.
Kruskal, 1964). For example, if one had a se-
quence 1.0, .8, .6, .7, one would average .6 and

_.7, and the monotone approximation would be 1.0, -

.8, .65, .65. The general, rule is that one averages
the first number that violates monotonicity and
its predecessor. A more complicated example is
given in Table 1. In this example, P(R; - 1;) and
P(R,_o) are averaged. However, since P(R;_;3)
is larger than this average, all four probabilities—
P(R;10), P(R;_11), P(R[-17), and P(R;_;;)—must
be averaged. It should also be noted that mono-
tonicity implies that the probabilities are re-
stricted to values greater than or equal to R..

We are now in a position to solve Equation 12
for the PM,. The procedure is as follows:

1. Choose an initial estimate for 7,

2 PM;,
'I_ -
and compute initial estimates for PM,, for ex-
ample, by assummg a geometric decay function
for PM;.
2. Compute o (and m) from Equation 15.
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3. Solve Equation 12 in order to get a new set
of estimates for the PM,. _
4. If these new estimates are different from the
previous estimates, return to Step 2 for a new
iteration; if they are not different, the solution has
"been obtained. N

Although we do not have a formal proof, I have
found that this procedure always converges. In
this way, r can be estimated in an iterative man-
ner, similar to the procedure described by Wat-
kins (1979).

Unfortunately, this procedure does not work
very well. In order to show this, several sets of
serial position functions were generated by Monte
Carlo simulation of the Search of Associative
Memory (SAM) model of Raaijmakers and Shif-
frin (1980), a particular quantitative model for
free recall that incorporates a buffer model for
primary memory similar to the one proposed by
Atkinson and Shiffrin (1968). It should be em-
phasized that the detailed structure of the SAM
model is irrelevant to our purposes. This model
is only used as one handy device for generating
serial position curves that arise from a combina-
tion of short-term and long-term recall. Any other
model with this property would have done as well.
What is relevant is that with such a model we are
able to generate simulated serial position curves
(that is, the *“data” are not error free, due to
chance fluctuations arising from the Monte Carlo
simulations). Thus, we have sets of serial position

functions with known values for r, the primary-

memory capacity.

The SAM model was used to generate 18 serial
position curves, each curve based on 5,000 quasi
subjects (simulation runs). These serial position
curves differed in list length (20, 30, or 40 items),
presentation time per item {1 or 2 sec), and the

buffer size, r, used in the simulations (r = 3, 4,

or 5). In order to see whether the proposed esti-
mation method is also applicable when there are
individual differences in primary memory capac-
ity, serial position curves with different buffer-size
parameters but with the same list length and pre-
sentation time were combined and averaged pair-
wise. For example, the three curves with list length
equal to 20 items and a presentation time of 1 sec
per item were averaged pairwise to yield three
new curves with mean buffer sizes equal to 3.5,
4.0, or 4.5. Thus, a total of 36 different serial
position curves were generated.

‘The procedure described previously was applied
to these generated data and was found to give
grossly inaccurate estimates for r, the primary
memory capacity. An example is given in Table
1. The second column of this table gives the gen-
erated values for P(R,). In this example, list length
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Table 1
Simulated Data and Resulting Estimates for

" the Probability of Recall From Primary

‘Memory (PM))

¥ ; P(R,) P*(R,) PM,; 7 TTUCPM,
L 1.000 1.000 1.000 1.000
L-1 o TS 15 693 .708
L-2 - 587 587 544 .503
L-3 492 492 424 .359
L4 452 452 368 257
L-5 425 425 326 .184
L—-6 414 414 .307 133
L-17 .397 397 274 .096
L-8 394 .394 267 070
L-9 391 391 258 . 051
L—-10 384 . 385 .238 .037
L - 11 .390 .385 238 .027
L-12 - 377 385 238 .020
L—-13 .390 .385 .238 .014
L-14 382 .000 011

382

Note. i = item; L = item presented last; P(R;) = prob-
ability that item is recalled; P*(R,) = probability of
recall after monotone regression (see text for explana-
tion).

—

~was set equal to 30 items and presentation time
‘was set 1o 2 sec per item. For these data the true

buffer size equals 3.5 (i.e., these data are the av-
erage of the serial position curves generated by
the Monte Carlo simulations for r = 3 and r =
4). The next column, labeled P*(R;), gives the
monotonic approximation to these data obtained
by monotone regression. The last two columns-
give the estimated and the true values for PM,
the probability of recall from primary memory.
In this case an estimate of 7 = 5.4 was obtained,
although the data were generated with a mean
buffer size of 3.5. Such a gross overestimation was
found for many of the generated serial position
curves. Moreover, the PM, tended to remain stable
at a high value rather than decline to zero. The
reason for this discrepancy quickly became ob-
vious. Equation 12 represents a system of n equa-
tions and n parameters. This means that the pro-
cedure is very sensitive to error, as was the case
here. Note that the monotonic restriction on the
parameters does not constrain the set of equations.
Monotone regression makes some of the P(R)
equal, but this simply means that the correspond-
ing PM; will also be equal. Hence the number of
equations and the number of parameters will be
reduced to the same extent, still leaving k equa-

-tions and k unknowns.

It must therefore be concluded that such a
method for the estimation of primary-memory
capacity is not very useful. It is necessary to make
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additional simplifying assumptions that will con-
strain the estimates for PM,. In the next section
I describe two such simplifications, both based on
Atkinson and Shiffrin’s buffer model for rehearsal

processes in primary memory (Atkinson & Shif-
frin, 1968).

More Constrained Versions
of the Estimation Method

One of the simplest ways to constrain the pa-
- rameters is to assume a geometric distribution for

(-
r

P(RL——m) = Rc

P(R) =

Equation 17 may be used to estimate r, the pri-
mary-memory capacity, in a very simple way. For
any trial estimate for », « can be estimated from
the identity P(R; - ,,) = R.. Primary-memory ca-
pacity may then be estimated by using Equation
17 to generate a least squares estimate for r (i.e.,
the value of r that minimizes the sum of the
squared differences between the observed and the
predicted probabilities of recall at the recency part
of the serial position curve). Note that this pro-
cedure does not make any assumptions concerning
long-term memory retrieval other than that the
probability of recall is proportional to the length -
of stay in primary memory. Since this assumption
is somewhat arbitrary, I also explored some al-
ternative assumptions. ‘ ‘

The first assumption considered is that SM,,
is a general linear function of s (i.e., Equation
11). I analyzed the predictions obtained with this
assumption by considering the two extreme spe-
cial cases obtained by setting either 8 = 0 (Model
la) or & =0 (Model 1b). Note that Model la
corresponds to Equation 9 and leads to the solu-
tion given in Equation 17. In addition to this linear
function for SM,,, I also examined the assumption
that SM,, is a negative exponential function of
n, the number of trials in primary memory (Model
2). Thus, the following three models were consid-
ered:

Modetl 1a,
- SM,, =

an  n<l/a

: 1.0 n>1/a,
Model 1b,

SMI',n = 18 - Rca

)" el 0

Y
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the number of trials that an item is rehearsed in
primary memory; that is,

Pn=jy==U—1/ry 1,

PM; ;= (1 —1/r). (16)
Such an assumption follows from a buffer model
for primary memory in which each item currently
in the buffer has the same probability (1/r) of
being replaced from the buffer by a new item (»
equals the buffer size). Substitution -of Equation
16 into Equation 12 gives the following result:

1\ i
—-) (r+L'—i):] izL—m
r
(17)
i<L-—m
Model 2,
SM,=1—-a" (O<a<l)

Model 2 led to the following prediction for the
serial position curve: ~—_

OO () RS () o [

RN

a+r— ar

1= (18)

Since at asymptote, P(R;) should equal R, and
PM; should equal 0 (and hence L — i should be
relatively large), & must be as follows:

_ r(]-_-Rc)
a'_Rc+r(l —R)

These three models were applied to each of the
36 serial position curves generated by Monte
Carlo simulation of the SAM model, as described
previously. For each of these models the estimates
for r (estimated from those serial position curves
that had the same true buffer size) were averaged. .
Figure 1 plots these mean estimated values for r
against the actual buffer capacity used in the sim-
ulation of the serial position functions.

From these results it is evident that Model la
(Equation 17) gives a reasonably accurate esti-
mate of the true buffer size, whereas the other
two models seriously underestimate primary-
memory capacity. Note that Model 1b is very sim-
ilar to the traditional Waugh and Norman (1965)
method for estimating primary-memory capacity.
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The present method, based on Model 1a, gives
much higher estimates for primary-memory ca-
pacity than the traditional method. The latter
method frequently generates estimates around 2.5
(see Glanzer & Razel, 1974), whereas the present
method gives values around 4. It should also be
noted that the present method does not tend to
generate lower estimates of primary-memory ca-
pacity with higher levels of recall at the asymp-
totic portion of the serial position curve (see Wat-
kins, 1974, p. 704). This results from the deletion
of the assumption of independence between the
probabilities of recall from primary and secondary
memory.

The simple solution described above is based
on the assumption of a geometric “decay” func-
tion for primary memory. In some cases, however,
a distinctively S-shaped recency curve is observed
(e.g., Murdock, 1962). Such data are inconsistent
with our simple model. As was already shown by
Atkinson and Shiffrin (1968, pp. 154-155; see also
Phillips, Shiffrin, & Atkinson, 1967), such S-
shaped recency curves can be accomodated by a
slightly different type of buffer model.

In this less restricted version of the buffer
model, the item to be replaced from the buffer
upon presentation of a new item is not selected
at random from the r items that make up the
buffer. Instead, the probability that a particular
item is replaced (kicked out of the buffer) is a
function of its recency of presentation: The “old-

est” item has the highest probability of being re- -

placed, and the “newest” item has the smallest
probability of being replaced. Phillips, Shiffrin,
and Atkinson (1967) proposed the following for-
mula for the probability that the item in the ith

oldest position is replaced (where i =1 corre-

sponds to the oldest item and i = r to the most
recent item): : 1
k= o(1 — &) .

1—(1-28y
As 6 approaches zero, k; approaches 1/r, and
when & = 1, &k, = 1: The oldest item will always
be the one that is replaced.

Now let us define B;; as the probability that an
item currently in the ith oldest position is kicked
out of the buffer by the jth succeeding item. Since
each item starts in the rth oldest position (i.c., as
the newest item) the probability that an item re-
sides for exactly j trials in the buffer equals 3, .
As shown by Phillips, Shiffrin, and Atkinson
(1967), the ;s can be calculated by solving the
following set of difference equations:

Bl.j =(1—- kl)Bl,j—l .
-1 r
B = [Z:l k1B + [I=Z+1 k16,5 1<i<r
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5,0

1ineér model,
4.5 =0
4.0 L

negative exponential

35 mode}

3.0 f.

Tinear model,
a =0

2.5

MEAN ESTIMATED BUFFER SIZE

3.0 3.5 4.0 4.5 5.0
BUFFER SIZE

Figure 1. Plot of the mean estimated buffer size or pri-
mary memory capacity against the actual buffer size
used in the simulations. (Filled circles indicate that
probability of recall from secondary memory, SM,,, is
proportional to length of stay in the buffer [Model 1a];
open circles indicate that SM,, is constant [Model 1b];
squares indicate that SM,, is a negative exponential
function of n, the number of trials in primary memory
[Model 2].)

6!,;' = (1 _kr)ﬁr-—l,j—l )

with the initial conditions 3;, = k,. The probability
that the item currently in position i is knocked
out by the jth succeeding item equals the prob-
ability thaton the next trial one of the other items
is replaced times the probability that the item
stays an additional j — 1 trials in the buffer (start-
ing from the next trial). From the above defini-
tions it follows that ‘

Pni=j)=8,, (1<j<L-—1i
and

PML—f=1_Zﬁr,j- (19)
j=1

Hence, the probability of recall for the item in
serial position / is given by

P(R;)

{(1 - S Bt el S8 iZL-m

[ 2

P(R,_,) =R, i<L-—m.
20)
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In order to estimate r, the primary-memory
* capacity, one has to estimate for each of a number
of (integer) values of r the best-fitting value of
8 by minimizing, for example, a least squares
function; the estimate of r is then equal to that
value of r resulting in the best (i.e., lowest) value
for the least squares criterion. )
Note that in this more general procedure the
characteristic aspect of the present method is re-
tained: No assumptions are made concerning the

long-term storage (LTS) retrieval process. other.

than that in any given condition the probability
of recall from LTS is proportional (within limits)
to the number of trials in the buffer (Equation 9).

This procedure was applied to the serial position
curves obtained by Murdock (1962). Estimates
of r and & were obtained that fit simultaneously
the curves from the 15-2, 20-2, 20-1, 30-1, and
40-1 conditions, where the first number stands for
the list length and the second number for the pre-
sentation time, in seconds, per item (the 10-2 con-
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dition was not used, since R, cannot be estimated
reliably with short list lengths). In this estimation
procedure the last 15 serial positions of each curve
were used, except for the 15-2 condition in which
the last 10 positions, were used. The best fitting
values of » and & were 7 = 4 and & = .301. With
these parameter estimates the oldest item is about
three times as likely to be replaced as the newest
item (k1 = 396, k2 = 276, k3 = 193, and k4 =
.135). As can be seen in Figure 2, with these pa-
rameter estimates I was able to fit the recency
parts of the serial position curves quite accurately.
" Finally, Watkins (1974) proposed a correction
of the traditional Waugh and Norman method in
order to accomodate the observation that the final
list item is not always recalled. Since it is assumed
that all items that are in primary memory at the
time of recall are recalled, it follows that not all
items enter primary memory. Watkins’s correc-
tion of Equations 1 and 2 is based -on the as-
sumption that the independence of primary and

1.0

0.8

0.6

<
FS

o
~N

PROBABILITY OF RECALL

(=]
~

0.2

i L A A A ' A A
-7 L-6 L-5 L-4 L-3 L-2 L-1 L

1 : i 2 A I i 1
L-7 L-6 L-5 (-4 L-3 {-2 L-1 L

1 L 1 1 il i il L
-7 L-6 L-5Ll-4 L-3 L-2 L-1 L

SERIAL POSITION

Figure 2. The recency parts of various serial position functions obtained by Murdock (1962). (The
continuous lines give the predicted probabilities of recall resulting from the present method of estimating
primary memory capacity. Numbers in upper right corners of first five panels indicate list lengths and
presentation times of various conditions. The lower right figure gives the mean probability of recall from
primary memory resulting from the application of the Waugh and Norman, 1965, method to both the -
observed and the predicted serial position functions. See text for discussion of equation. L = item pre-

sented last.)
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secondary memory applies only to those items that
gained access to primary memory. It should be
noted that the most general version of our method
is still applicable when some items do not enter
primary memory (see Equation 10). In that case,
PM,; # 1.0, hence P(n; = 0) # 0. However, in the
more constrained versions of the method, we do
assume that all items enter primary memory.
Hence, some correction may be desirable when
the probability of recall for the final list item is
less than 1.0.

There seem to be two ways to explain this ob-
servation within the framework of a two-store
model. First, one might assume that some items
do not enter primary memory (the correction pro-
posed by Watkins, 1974). This leads to the fol-
‘lowing modification of Equation 16:

PML_,' = v(l_ U/r)i,

where v denotes the probability that an item en-
ters the buffer upon presentation. A similar cor-
rection may be applied to Equation 19. Alterna-
tively, one might assume that although all items
enter primary memory, the probability of recall
does not equal 1.0 for all items still in primary
memory at the time of recall. Due to a number
of factors (e.g., output interference) it might
sometimes be the case that one of the r items still
in primary memory at the beginning of recall is
lost from primary memory before it is actually
recalled. With this assumption Equation 8 has to
be changed to

P(R;)) = vP(P) + (1 — U)P(Pi)P(RiIPi)

+ P(P)P(R|P), (21)

where v denotes the probability of recall from‘

primary memory for those items still in primary
memory at the beginning of recall. Since item i
will have been in primary memory for L — i+ 1
trials if it was still in primary memory at the be-
ginning of recall, it follows that P(R|P;) will be
.equal to SM;; ;. It is practically impossible to
distinguish these two alternatives on the basis of
the predicted serial position curves. Both predict
similar curves and both lead to a slightly higher
estimate for primary-memory capacity. However,
the second alternative is supported by some results
observed in overt rehearsal studies. Both Rundus
(1971) and Rundus and Atkinson (1970) observed
that the probability of recall was the same for all
items in the final rehearsal set. However, this
probability was not equal to 1.0 but was equal to
.96 in the experiment of Rundus (1971) and .92
in the study of Rundus and Atkinson (1970). For
this reason I prefer the second alternative. As an
example, Equation 20, corrected according to

-capacity (i.e.,
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-Equation 21, was applied to Murdock’s serial po-

sition data (in the same way as described previ-
ously). In this application v was estimated as .965,
and 7 and 6 did not change very much (¥ = 4 and
6 =.348, giving , k; = .424, ko= .277, ky=
.182, and k4 = 120) '

To récapitulate, I have described a method
based on the general two store model that makes
it possible to estimate primary-memory capac1ty
without making any particular processing as-
sumptions concerning retrieval from LTS other
than the reasonable approximation that the prob-
ability of recall from LTS or secondary memory
within a given condition is proportional (within
limits) to the amount of time the item has spent
in primary memory. I have shown that the most
general version of this method does not work in
practice because of its sensitivity to measurement
error. Because it is based on a system of n equa-
tions and n unknowns, it tries to find a solution
that fits the data exactly, including the measure-
ment error, and this makes it necessary to intro-
duce additional simplifying assumptions. 1 next
showed that the buffer model proposed by Atkin-
son and Shiffrin (1968) generates a relatively sim-
ple solution to this problem. Moreover, this
method gives a valid measure of primary-memory
the estimate is close to the true
value), a property lacking in both the original
Waugh and Norman (1965) method and Watkins’
modifications of that method (Watkins, 1974,

-1979).

’
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