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This article discusses alternative procedures to the standard F-test for ANCOVA in case the
covariate is measured with error. Both a functional and a structural relationship approach are
described. Examples of both types of analysis are given for the simple two-group design. Several
cases are discussed and special attention is given to issues of model identifiability. An approxi-
mate statistical test based on the functional relationship approach is described. On the basis of
Monte Carlo simulation results it is concluded that this testing procedure is to be preferred to the
conventional F-test of the ANCOVA null hypothesis. It is shown how the standard null hypoth--
esis may be tested in a structural relationship approach. It is concluded that some knowledge of
the reliability of the covariate is necessary in order to obtain meaningful results.
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Introduction

The analysis of covariance (ANCOVA) for a single-factor experiment is based on the
following linear model for the dependent variable Y;;:

Yy=p+o+ BX,;—X)+ ey, i=1..,mj=1,.

where p is the overall mean, «; is the effect due to treatment condition j, B is the
parameter of the regression of Y on X (the concomitant variable or covariate), and ¢,
refers to the error component. It is important to note that X refers to the observed value
on the covariate and is assumed to be measured without error. What will be the effect on
the ANCOVA test results if the covariate measurements are in fact fallible? As has been
recognized by many authors, the answer to this question depends on the exact assump-
tions made with respect to the linear model. If one assumes that the Y—vanable is indeed
linearly related to the observed value of the covariate, then the ANCOVA test results will
be correct. If, on the other hand, it is.assumed that Y is linearly related to the underlying
true score on the covariate, the ANCOVA results will no longer be correct and the
standard F-test will lead to biased results. A natural question to ask, then, is whether
there are feasible alternatives to ANCOVA for such a case that do lead to valid results. In
this paper we will present some results that are relevant to this issue. .
Suppose the data are in accordance with the following model

Yij=ﬂ+aj+ﬂ( T T')+’8i(j)$ ‘ 1
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and

iy

where T;; denotes the true score on the covariate. It is assumed that the disturbance
variables &y 5 and §,;, are normally distributed with expectation zero and variances equal
to 2 and o, respectively. This is similar to a well-known model that has been studied
extenswely in econometrics and mathematical statistics (see e.g., Kendall & Stuart, 1967)
under the heading of linear functional and structural relationships. The distinction be-
tween a functional and a structural relationship is that in the former approach no distri-
butional assumptions are made with respect to the T;;. This implies that in the functional
case all T;; are parameters, that is, fixed unknown constants In the structural case, these
T;; are 1ndependent random variables, independent of the disturbance variables ¢,;, and
6,0, It is generally assumed that the T;; are sampled from normal distributions with
means p; and variances 02 Note that th1s distinction is similar to the difference between
fixed effects and random eﬁ'ects models in ANOVA.

Specific cases of this approach to ANCOVA have been discussed by Lord (1960) and
Sorbom (1978). The present paper, however, not only reviews this work but also examines
a number of other cases. We will apply results that have been derived in the statistical and
econometric literature on the errors-in-variables model to the present ANCOVA model.
Procedures will be discussed for estimating the parameters for such models and methods
for testing various hypotheses.

ANCOVA as a Functional Relationship

In the functional relationship approach, the true scores T;; are not assumed to be a
random sample from a particular parent distribution, but are considered to be fixed,
unknown constants (i.e., parameters). For simplicity, we will restrict ourselves to the two
group case with equal #’s. In that case we may rewrite (1) and (2) as follows

yij=“+“zj+ﬁ(7;j_T)+£i(j), i=1,...;n;j=1,2

x;=T;+dwp
where Z, =land Z, = —1. :
This 1mp11es that the model has (2n + 5) parameters: Ty, Ty, iis Toys Tyas vy Thas

u o, B, 62, and o3 . The T.s are usually referred to as incidental parameters and the other
five parameters are called structural. Incidental parameters are specific to individual ob-
servations, while the structural parameters are common to sets of observations. The
presence of incidental parameters poses a problem in statistical estimation since the
standard maximum likelihood (ML) theory of estimation does not apply in this case. Even
if we make the assumption that the variance of the T;;’s (and hence the variance of the
X ,/'s) converges to a fixed value, the ML estimators for the structural parameters are not
necessarrly consistent. An example of this will be shown when we dlscuss the ML esti-
mators for the parameters of the functional model for ANCOVA.
It should be noted that under the null hypothesis & = 0, the present model reduces to
the famous linear functional relationship problem discussed by, for example, Kendall and
Stuart (1967) and Anderson (1976, 1984). In this case the likelihood function is given by

L=(@4n%0}02) "exp {—(20)) ' LY (X;— T)* —(02) ' LY (Y;—u—B(T,;— TH%}.
It can be shown that this likelihood function has no maximum (as a function of the

parameters). To illustrate this fact, suppose we let T;; = x,;. It is easy to see that with this
substitution L— oo as o2 approaches zero. Since the likelihood function has no maxi-
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mum, maximum likelihood estimators do not exist (see also Anderson, 1984; Anderson &
Rubin, 1956). Similar results can be obtained for the present ANCOVA model in case
« # 0. Estimation methods other than the ML-method do exist for this case, for example,
Geary’s method of using product cumulants (see Kendall & Stuart, 1967). This method
however becomes useless as the distribution of the true scores T;; approaches a normal
distribution (in that case all cumulants of order > 3 are zero and the equation system
used in estimafing the parameters becomes unsolvable). Hence, it is to be expected that
such a method will not be very useful in practice.

The Assumption of Equal Variances

In order to obtain more meaningful results, we must either impose some restriction
on the model or obtain additional information such as knowledge concerning the error
variances or the reliability of the covariate. The latter case will be discussed in the next
section. The most common identifying restriction that is made in this situation is that the
error variances of X and Y are equal, that is, g2 = o2. Note that the more general
assumption o2 = Ag? (with 1 a known constant), is identical to the present restriction
provided that we rescale the observations and the resultmg estimates for u, « and B
accordingly.

With this assumption, the following ML-estimators are obtained:

T_X,.,.+B( - ¥Y-4z, +BX)
ij = 1+ﬂ2

where Z, =land Z, = —1,

i=1..,nj=12

uh<|

A=
¢=(¥, —Y’)—B(XI—X),_ |
BZ x:f:—'zﬁ

% =" 2N(1+ﬁ2) =

and

"Vyy — u/;tx + {(nyy - I,V.wcx)z + 4W§y Yz
T 2“’;_‘, y s

f=

provided that W, # 0. In these equations W,,, W,,, and W, denote the pooled within-
groups sums of squares and cross- products N denotes the total number of observations,
that is, N = 2n.

What can be said about the properties of these estimators? First of all, let us consider
the question of the consistency of these estimators. Let us assume that the pooled within-
groups variance of T,

N
converges to a fixed value S2. In that case the sample pooled within-groups variances and
covariances converge in probability to their expectations:

xx 2 2
— St + o7,

W,
BAE 2 S2
N —*ﬂ Is
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—I%Zﬁ B38% + a2

Upon insertion of these results into the equation for f, we obtain the result that f— g,
and hence, § is a consistent estimator for 5. The estimator for the error variance aZ,
however, is not consistent but converges to ¢2/2. This illustrates the above mentioned fact
that in the presence of incidental parameters ML-estimators are not always consistent. In
this case, however, the inconsistency can be easily remedied by using 262 as an estimator
for 62 . In the remainder of this paper we will denote the estimator 262 by 6.

On comparing these estimators with those of the conventional ANCOVA model, we
note a number of similarities. First, both £ and by (the regression coefficient in
ANCOVA) are calculated from the pooled within-groups variance-covariance matrix.
Hence, these estimates are not sensitive to the differences between groups. Next, the
estimation equations for both £ and & are identical to those of the conventional
ANCOVA model, provided that £ is substituted for by, . Therefore, the present analysis
corresponds to a conventional ANCOVA analysis provided that in the estimation of the
slope of the regression lines the measurement error in the covariate is taken into account.
We will make use of this correspondence in the construction of a test statistic for the
hypothesis o = 0. ,

Since we are using the ML-method, the most natural test statistic would seem to be
the traditional chi-square test based on the likelihood ratio statistic (4). This approach,
however, breaks down due to the presence of incidental parameéters. The reason for this is
that it is based on the assumption that the number of parameters does not change with
sample size. This condition is obviously violated in this case. . '

This conclusion was verified by Monte-Carlo simulation of the present functional
ANCOVA model (see Table 1). These results are based on 5000 simulations of a two-
group design with one covariate, using (1) and (2) with « = 0. Random number generation
was performed with the DEC-Fortran function RAN, which has been shown to be a
satisfactory pseudo-random number generator (see Edgell, 1979). As a further check, the
results were divided in successive blocks of 1000 simulations each. The resulting distri-
butions of the test statistics to be considered in this paper were then tested for equality.
No systematic deviations were observed. Normally distributed values for the error vari-
ables were generated using the method described in Box and Muller (1958). A frequency
distribution of the obtained values of the test statistic- was formed using equally probable
class intervals, that is, the class limits were determined from the percentile points of the
appropriate chi-square distribution. In addition to the mean covariate difference between
the two groups, we also varied n, p, the reliability of the covariate, and f. Within each
group, the true covariate scores were uniformly distributed. These results show that —2
log A does not approximate a chi-square distribution, not even when the sample size is
quite large. ,

In order to obtain a meaningful test statistic we evidently have to take a different
approach. A possibly fruitful angle to attack this problem is provided by a reconsider-
ation of the test statistic in the ordinary ANCOVA model. It can be shown that in this
model the estimator & for the treatment effect, is normally distributed with mean « and
variance var(d). By standard methods an estimate vdr(&) of var(d) may be obtained from
the sample results. Hence,

po_G—a
 {var(@}*?

follows a t-distribution with (N — 3) degrees of freedom (N — 3 since 3 degrees of freedom
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TABLE 1

Goodness-of-Fit (x2, df=9) of Likelihood Ratio

Statistic to Chi-Square Distribution (df=1)

T1=T2§o T,=-10, T,=10
n o B=1 B=5 B=1 B=5
.5 2502 2546 4260 2191
10 T 2492 2535 3046 2135
.9 2519 2538 2451 2087
.5 1475 1399 3654 1676
50 T 1478 1411 2306 1599
.9 1466 1&18 1654 1565
.5 1363 1397 3484 1624
100 T 1357 137k 2372 1559
.9 1355 1378 1670 LT

—

are used up in the estimation of g, «, and f). The important result for our purposés is that
in the case of the null hypothesis @ = 0, t* is equivalent to the usual F-statistic in
ANCOVA.

It happens to be the case that in the functional ANCOVA model, d is asymptotically
also normally distributed as N — oo (assuming the pooled within-groups variance of T
converges to a fixed value $3). Hence, we will consider the test statistic

-

t —_— ____a_._—
~ {vdr(@)}'?

for testing the null hypothesis « = 0. The problem is thus reduced to finding a reasonable
estimate for var(d). A first-order approximation (to the order N ~!) of this variance is

c(1 + B?)

var(d) =~ —

—kwﬂmgﬂ%¥22+4XN"ﬂ

Furthermore, it can be shown (see also Robertson, 1974} that

a2{(1 + B*)S% + o7}
NS%

var(f) = +O(N™). 3

Unfortunately, these formulas are large-sample approximations that are not very
good with small samples and/or large error variances (as was observed from Monte-Carlo
simulations). This is probably related to the fact that the exact distribution of f has some
peculiar characteristics (e.g., infinite moments, see Anderson & Sawa, 1982). In un-
favorable circumstances, these formulas severely underestimate the variances obtained
from Monte-Carlo simulations. It turns out, however, that a simple correction for bias
reduces many of these problems considerably.

It may be shown (see e.g., Robertson, 1974) that the expected value of f is approxi-



526 . PSYCHOMETRIKA

* TABLE 2

Goodness-of-Fit" (x2-, df=9) for Proposed t-Statistic

in Comparison to Conventional F-Test

t-statistic cor;vention.a.l F-test
T,=T, | T1#T2 | T1§T2 T1¢T2
n p B=1 B=5 g=1 B=5 . B=1 _ B=5 .  B=1 _  B=5

.5 13.6 30.6 555,1 822.3  54.1 1463.9 16975.L L0158.1

10 .7 12.9 20.0 210.6 339.7 33.7 123.6 65Th.5 20921.2
.9 17.6 23.5 .k 91,2 6.7 13.5 T71.1  2621.6

.5 11.1 15.2  151.9 173.9 - 60.9 602.3 LL9ko,0 45000.0

50 .7 10.0 16.4  45.2 712.9 - ho.L - 195.7 L3263.0  L45000.0
.9 11.5 15.9 12.1 17.5 8.6 21.4 18554.9 35816.3

.5 7.7 15.9 oh.5 136.9. T79.4 623.5 L5000.0 U45000.0

100 .7 6.5 15.0 Lth.9 65.6 = L45.6 206.8 L4980.0 - 45000.0
.9 7.6 14,9 23.5 32.8 11.6 39,2 37251.6 A4h7hO.5

Note: Maximum value of chi-square is 45000

mately equal to
W1+Wﬁz+f)
N@1 + /32)S4

ﬂ@=ﬁ*
Hence, this formula may be used to obtain an approx1mately unblased estimate ,l? for B:

p.-2

} + O(N™Y.

where C is given by
az"lv 22 4 42
C=1+’0' {( +ﬁ)2T":0},
N(1 + f35%

with

Simulation results show that the vari,ance' of ﬁc‘ is well approximated (even with
relatively small sample sizes) by (3). A corrected estimate for « is then given by:

g, =Y - - hX, - X). ' @

Hence, we conclude that B. and d, are approxnmately normally dlstrlbuted w1th mean f
and «, respectively, and variances var(,B) and var(d) as given above. As a final step, sample
estimates have to be inserted into these formulas to obtain estimated variances for &, and
f.. It turns out that the best approximation is provided by using f,, $% and Né*/(N — 3)
in these formulas as estimators for, respectively, B,'S% and ¢2. Table 2 gives some results
showing how well the resulting test statistic for the hypothesis « = 0 approaches a ¢-
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TABLE 3

Numerical Example of the Proposed Test Procedure

Pooled within-group covariance matrix:

Y X |

Y| 51.025 | §H=-1.55 ~§é=1.25.

X | 24.750 14.600 x,=5.00  x,=8.00
n1=10 n2=10

Successive steps in calculating test statistic:

B = 1.977 écl= 1.961

o = 1.566 a_ = 1.542

35 = 1.0k2 2Nc /(N— ) = 2.451
o® = 20° = 2.08) * var(B) = 0.049 "

sE = 12.516 ~ var(a) = 0.705

£(17) = 1.836

distribution with (N — 3) degrees of freedom. Note that the approximation becomes better
as o2 decreases and as sample size increases. Although in some cases the approximation
cannot be said to be very good, it should be noted that even in such cases the present test
statistic is still always quite superior to the usual F -test. Hence, we may conclude that the
present test statistic is uniformly superior to the traditional F-test. Of particular interest is
the fact that the new test statistic is also superior when the true covariate means are
equal. Carroll, Gallo, and Gleser (1985) showed that under this condition the least squares
estimate of § has a smaller limiting variance than the ML estimate. However, this is
probably not true for the corrected ML-estimate. Table 3 gives a numerical example in
order to illustrate the necessary calculations.

Extensions of the Basic Model

Similar procedures can be developed for a number of extensions of the above model.
The major problem with that model is the rather restrictive assumption concerning the
error variances. The assumption of equality of o2 and ¢} (or the equivalent assumption
that the ratio of these variances is known) may not be realistic in many applications. This
is especially so since ¢ will usually consist of two components, only one of which
contributes to a2. These two components-are the measurement error and the error in the
equation, that is, the deviation of the error-free dcpendent variable score from the value
predicted on the basis of the functional relatmnshlp o2 measures the combined effect of
these two sources of variation, while o} consists of measurement error only. However,



528 PSYCHOMETRIKA

there is no way out of this predicament unless we have some additional information that
allows us to identify the error variances separately.

In practice, if additional information is available, it will usually be of a kind that
enables the reliability of the covariate measurements to be determined or estimated. One
such instance was analyzed (in a not widely known paper) by Lord (1960). This analysis
(which is consistent with the general approach followed in this paper) assumes that two
parallel measurements of the covariate are available. In effect, this assumption implies
that replicated observations are available concerning the T;scores. This of course allows
o} to be estimated from the replicated observations, and hence a separate consistent
estimator for oZ may be obtained (see Lord). DeGracie and Fuller (1972) and Stroud
(1972) present similar analyses assuming that the error variance of the covariate is either
known or has been estimated independently. However, it should be noted that although
in this case consistent estimators for the parameters may be obtained, these are not
ML-estimators. The likelihood function for this situation still remains unbounded, for
similar reasons as discussed above. The same difficulty arises in all other cases in which
additional information is available that allows o3 to be estimated. However, consistent
estimators may be derived, based on the pooled within-groups variance-covariance
matrix. As in the model discussed in the previous section, the resulting estimator for f§
may then be corrected for bias and an approximate t-test may be constructed for the
hypothesis o = 0. ,

It should be noted that the assumption of parallel measurements is not necessary.
Consistent estimation is also possible when the “true” covariate-is measured through two
socalled congeneric tests. In this case a second covariate, Z, is available that is known to
be correlated with the true score of X, but is independent of the errors of X and Y. Such a
variable Z is usually referred to as an instrumental variable and its use in the estimation of
the parameters of functional relationships has been studied in the statistical and econo-
metric literature (see e.g., Kendall & Stuart, 1967; Moran, 1971).

As an example, let us consider the case that the reliability of the covariate, p,_, is
known. In that case, g7 may be estimated as

~2 (1 - pxx)vix
O3 = “‘“"‘—“—""‘—'N .

Hence, $2 is given by

I

p

XX

$2 =
T N

Consistent moment estimators for the remaining parameters may now be obtained as
follows. The estimator for f is defined as:

Estimators for o and ¢? are given by

Ci=( I_Yf)_ﬁ(X_I_X_L
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Using standard methods, it may be shown that the expectation and variance of § are
approximately equal to
2

E(ﬂ)—ﬂ 1+_ﬁﬁ_ +O(N'1)
- N(S% + 63)? ’

SHaZ + p*6}) + ol a; 2p%a;
NS* T N(S2 + 0?)?

var(f) = + O(N~Y).

As in the previous case, an approximately unbiased estimator f, for fis:
Y
N($% + 63)°

The corrected estimator d, for « is defined as before, see (4). The variance of d_is equal to

ol + pio} + var(Bp, — 1,)
N 4

2

var(d) = + O(N™Y).

As before, these formulas are large sample approximations. Using similar arguments as in
the previous case, a t-test may be constructed for the null hypothesis ¢ =0. As an
illustration, Table 4 gives the necessary calculations when this procedure is applied to the
numerical example given by Lord (1960). Since the number of observations is in this case
different in the two groups, it is easiest to test the hypothesis a; —u3-= 0 instead of a = 0.
The approximate variance of &, — &, is then given by:

. oy (o2 + BN - B}
var(d, — d,) = —n%—i + var(B)u, — uy)? + O(N™1).
’ 1772 o

One of the assumptions of ANCOVA is the equality of the within-groups regression
coefficients. In the ordinary ANCOVA model this assumption may be tested by com-
paring the residual sum of squares about the within-groups regression lines based on the
pooled estimate for the within-groups regression coefficient with the residual sum of
squares obtained by using a separate regression coefficient for each group (see e.g., Winer,
1971, p. 772-773).

A similar approach may be followed in the present case. The ANCOVA model
defined in (1) and (2) is based on the assumption of a single, common, regression coef-
ficient B. A test for the equality of the within-groups regression coefficients may be
obtained, starting from a model with separate regression coefficients, that is (1) with B,
substituted for B. Under the assumption that 62 = ¢3, f; may be estimated from the sums
of squares and crossproducts in group j. It may be shown that a ML-estimator for g, is
given by

W, — w/:i, xx T {(W W) XX 2 + 4W2 }1/2

ﬁ‘ iy iy — TMi bxy
j_ 1

2Wj' xy

where W, is the sum of squares or crossproducts in group j. As before, unbiased esti-
mates for the B;’s may be obtained as follows:

Bj,c = ﬁj

(1 + P52 . + 67}
n(l + f3HSt ;
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TABLE 4

Application of Test Procedure to Lord's Example

Data: :
group 1 group 2

number of cases 119 93
dependent variable, Y

mean - 1.ho 1.57

s.d. 0.75 0.61
covariate, X

mean L.o7 5.34

S.do 2030 1'97
reliability of X 0.80 0.73
Computed values:
pooled reliasbility, p 0.7735
error variance of X, c§  ~t.058
true score variance, Sg 3.614
slope estimate, B 0.241
error variance of Y, o ’ 0.269
corrected slope estimate, 8 0.2k1
estimate of group difference, o=t 0.136
variance of B, 0.000506
variance of &= 0.007146
test statistic, t(209) 1.609

In this equation 6° and S? r are given by

62 = Z gf VVj xx 2ﬁj W/j-.xy + Wf«)’y
N1 + ) ’

and
S‘Z . Wf.xx - 6:2
T n *

In large samples, /?,-.c will be approximately normally distributed with mean §; and
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variance var(f)),

oZ{(1 + BHS} r + o7}
nS}‘, - ’

var(f e

where sample estimates have to be substituted for population parameters, using N ¢*/(N
— 4) as an estimator for ¢7 . The null hypothesis §;, = f§, may be tested with the statistic

B-5

2§2\1/27
(T)

var(B,) + var(8,)
5 .

t=

where

§? =

This statistic is approximately ¢-distributed with (N — 4) degrees of freedom. It should be
noted that if the assumption of equal B’s has to be rejected, application of the ANCOVA
model should be strongly discouraged, since the results will generally not be meaningful.
In that case, a comparison between groups depends on the value of the covariate at which
the comparison is made (see e.g., Tatsuoka, 1971).

ANCOVA as a Structural Rel‘\ationship -

In the structural relationship approach, it is usually assumed that the true scores T;
are randomly sampled from normal distributions with means p; and variances o?. Given
this assumption, the data in each group follow a bivariate normal distribution. It is then
possible to derive ML-estimates for the parameters of the model by maximizing the
likelihood function. Since these ML-estimates may be obtained from the LISREL-
program (Joreskog & Sérbom, 1981), we will not present the likelihood function nor any
of the equations that can be derived for the parameter estimates. For a description of the
LISREL model and examples of its use, we refer to Lomax (1982, 1983) and Joreskog and

Sorbom.

The Case of Equal Variances

In this section we will discuss the analysis of the structural ANCOVA model using
the LISREL approach. Using the LISREL terminology, the basic equations of the struc-
tural ANCOVA model, (1) and (2), may be rewritten as follows:

n | _|O B My p+o;— BT 0
|:T:,:| - [0 O:H:Tu:l * [ H; [+ I:Tsj = ﬂj:l’
Yyl [t Offny Ei¢j) |
[Xij] B I:O 1:| |:Tu} * [5@:]’

Since in each group the equations contain constant intercept terms, equal to, respectively,
p+o; — BT and y;, we have the structured means version of the LISREL model. This
1mp11es that the LISREL specification should contain an X-variable which is identical to
1. In this case, one should analyze the raw moment matrix instead of the covariance or
correlation matrix. In addition, the fixed-x option of LISREL should be used (see
Joreskog & Sérbom, 1981).

Although it is not entirely clear why, it turns out that the ML-estimates do not
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behave very well unless it is assumed that ¢? = 62 (except when the model fits the data
perfectly). Perhaps this should come as no surprise since ML-estimators do not exist in
the corresponding functional model. We will return to this problem later on in this paper.

Under the assumption that ¢2 = ¢, the model contains 3g + 2 free parameters: §,
o7, and for each of the g groups u + a; — BT, u;, and o7 . The estimates of 62 and ¢? are
given by the variance-covariance matrices of ¢ and {. The null hypothesis «; = 0 may be
tested by constraining the intercept parameters p + a; — BT to be equal. The appropriate
likelihood ratio (LR) statistic for testing this hypothesis is formed by subtracting the
chi-square value reported by LISREL under the unconstrained model from the chi-square
value obtained in the restricted case. In large samples this statistic follows a chi-square
distribution with (g — 1) degrees of freedom.

It should be noted, however, that the chi-square values reported by the LISREL
program are not quite correct. It turns out that the reported chi-square values should be
multiplied by a factor n/(n — 1), assuming equal n’s in each group. (No simple correction
can be applied if the groups contain unequal numbers of observations, since the LISREL
program does not report chi-square values for each group). The reason for this discrep-
ancy is that the LISREL model is based on the assumption that the observed covariance
matrix follows a Wishart distribution. The structural ANCOVA model, however, is based
on the assumption that the observations in each group follow a multivariate normal
distribution. Although these two assumptions are closely related, they are not equivalent.
In particular, the likelihood functions are slightly different. This difference implies that the
chi-square values in each group have to be corrected. This is generally the case if intercept
terms are included in the model and the raw moment matrix is analyzed (see Joreskog,
1973, p. 93). ‘ o

An example of the LISREL approach to the analysis of a linear structural ANCOVA
model is presented in Table 5. This table includes the appropriate parameter estimates
and the corrected chi-square values. The example which will be discussed, is the same as
was used to illustrate the functional solution (see Table 3). These data were not obtained
by Monte Carlo simulation but by inserting particular values for the .parameters into the
theoretical equations for the moments. Application of the LISREL program to these data
enables a direct examination of the quality of these estimates. The data were generated in
such a way that the observed statistics would correspond almost perfectly to a structural
ANCOVA model. There are only two minor deviations from the model as presented
above: (a) the two groups were slightly different with respect to the parameter f, and (b)
o2 and o2 were also given different (but nearly equal) values. The parameter values were:
p=00, a=16 B, =21, f,=19, u, =50, u, =80, o =100, 62 =150, o2 = 1.9,
62 = 2.1 and n = 10 in each group. The resulting moment matrices are given in Table 5.

Note that the parameter estimates closely resemble the corresponding functional
estimates. Thus, the latter values may be used as initial estimates for the structural
parameters. Initial values for the two remaining parameters, ¢ and o2, may be obtained
from the following formula:

s+ s + Boshy — 6201 + 52).
(1 + g»?

These initial parameter estimates are quite useful since the LISREL program may arrive
at an incorrect solution when supplied with bad initial estimates. Incorrect solutions are
not infrequent in LISREL and are characterized by negative variance estimates. The
LISREL program may generate such solutions because it does not restrict the variance
estimates to nonnegative values. It turns out however that in many cases the likelihood
function has several (local) maxima, only one of which is in the correct parameter space.

A2 _
J
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TABLE 5

Numerical Example of the Analysis of Covariance
as & Linear Structural Relationship

Observed moment metrices (input for LISREL):

group 1 (n=10) group 2 (n=10)

Y X 1 Y X 1
Y |L8.k03 57.613
X 13.250 37.100 38.500 81.100
1 =-1.550 5.000 1.000] 1.250 8.000 1.000

Maximum likelihood solution for parameters:

HO: a=0 H1: a#0
u -0.150 - -0.150
o 0.0 1.566
E 1.874 1.977
ﬁ1 5.586 5.000
;2 T.41Y - 8.000
Sf 11.830 10.986
32 15.190 14.055
Si 2.555 ~ 2.08k
LISREL x° 4.29 0.22
(corrected) af=3 afr=2
Test of H: x> = 4.07, af=1

For example, when supplied with bad initial estimates, LISREL obtained an incorrect
solution (under the alternative hypothesis) for the numerical data given above with a
chi-square value of 0.37.

Extensions and Further Tests of the Structural Model

Our solution to the fallible covariate problem in the structural case (as well as in the
functional case) is based on the assumption ¢2 = ¢7. As mentioned in the discussion of
the functional model, this is a very restrictive assumption that is difficult to defend. It is
not known to what extent violation of this assumption biases the results of the analysis.
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In particular, we do not know whether this leads to a substantial bias in the likelihood-
ratio test for the ANCOVA null hypothesis. Although the present case seems quite similar
to the functional case, there are some important differences. In the functional model, the
parameters o7 and o7 are not both identifiable (unless additional information is present).
In the structural model, on the other hand, these parameters cannot be said to be
unidentifiable. The reason for this is that these parameters are estimated correctly when
the observed covariance matrix (or moment matrix) fits the model exactly, that is, if a
perfect solution is possible. Problems arise however as soon as the observed matrix
deviates slightly (and nonsignificantly) from the predicted structure.

In order to demonstrate this point, we generated a number of moment matrices
which violated the assumption 67 = o} in varying degrees. In each case, 62 was set equal
to 2.0, while o7 was varied between 2.0 and 17.0. The remaining parameters (except for f,
and f,) were equal to those used to generate the data in Table 5. When the regression
coefficients in the two groups, f, and f,, were set equal to each other (in which case a
perfect solution is possible), the correct solution was always obtained and all the parame-
ter estimates were equal to the true values. However, when 8, and f, were given slightly
different values, strange and unexpected results were obtained. Note that none of these
datamatrices violate the structural ANCOVA model with ¢ # 6% to any significant
degree. Table 6 gives the most important results of this analysis. In this table, the esti-
mates for 62 and g7 are given as well as the chi-square values from the LR-test for the
hypothesis ¢? = ¢2. These parameter estimates were not obtained with the LISREL
program, but with a general purpose minimization program that allows upper and lower
limits on the parameter values (James & Roos, 1975). This program was used because in
these cases the LISREL estimates from o2 and o2 were often outside the admissible
parameter space (LISREL does not restrict the parameter estimates to values within the
admissible parameter space). For these parameter values, the results are very unstable and
strongly dependent on small differences in §, and §,.

The lefthand part of Table 6 gives the results for f, = 1.9 and #, = 2.1. In this case
o’ was always estimated as 0.0 (the lower bound), while o2 was always overestimated in a

TABLE 6
ML-Estimates and Test for Equality of ci and 0§
B,=1.9, B,=2.1 B,=2.1, B,=1.9
02 ;2 (‘;2 2 ;2 ;2_ 2
§ ‘e § X € 5 X

2,499 0.09 8.879 0.160

0.0
3.499 0.10 11.605 0.0 0.122
0.8

0.0
0.0
0.0 5.499 0.11 14,436 .804 0.069
0.0 7.499 0.13  15.059 2.515 0.041
9 0.0 9.499 0.14 15,487 4,312 0.026
11 0.0 11.499 0.15 15.801 6.159 0.016
13 0.0 13.499 0.17 16.0L43 8.039 0.009
15 0.0 15,499 0.19 16.235 9.943 0.005
0.0

17.499 0.20 16.391 11.864 0.003
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systematic way: The estimated value for o; was -equal to the true value plus a constant
(0.499). More importantly, the LR-test does not seem to be very sensitive to changes in o7
(although the chi-square values become slightly larger as o2 deviates more and more from
o?). In all cases, the value of this statistic is quite small and never leads to rejection of the
hypothesis 62 = oZ. The righthand part of Table 6 gives the corresponding results for
B, = 2.1 and B, = 1.9. Although the regression coefficients have not been changed very
much, the pattern of the parameter estimates is completely different from the previous
case. In this case, o2 is grossly overestimated while o} is severely underestimated. More-
over, the chi-square values of the LR-test decrease with mcreasmg differences between o2

and ¢2. Hence, we may conclude that the hypothesis 62 = ¢2 is not testable and that the
separate estimation of ¢ and ¢} leads to unsatisfactory results.

More satisfactory results can only be obtained if additional information is available
that allows the identification of both o2 and 7. Suppose for example, that we know (or
have information that permits the estimation of) the reliability of the covariate, p,,. In
that case, o2 might be fixed at (1 — p,)W,,/N, as in the corresponding functional case.
This allows 62 to be estimated. Although this does not correspond to the conventional
ANCOVA model, knowledge regarding p,, allows one to estimate separate error vari-
ances within each group. It is usually assumed that the measurement error o2 is equal in
all groups. If there is reason to suspect that this assumption is not correct, separate
reliabilities should be used for the estimation of these variances.

As an example of such an analysis with different reliabilities, we reanalyzed Lord’s
numerical example (Lord, 1960). Three types of analysis were performed, the results of
which are given in Table 7. Model I is the type of analysis we have just described, adapted
to this situation, that is o2 in each group is set equal to (1 — p)W, ,./n;. Model II is the
correct analysis given the assumption of unequal measurement errors. In this analysis ¢}
was set equal to af(l — p)/p, where aj? is the true score variance in group j. Since the
LISREL program does not allow such a restriction on the parameters, these estimates
were obtained by diréct minimization of the appropriate likelihood function using a
general-purpose minimization routine. Another type of solution was presented by Sérbom
(1978). Sérbom used the information concerning the reliabilities in a different way. Instead
of fixing or restraining o2, Sérbom created an artificial second covariate which was
constructed in such a way that the two covariates were parallel measurements with a
correlation equal to the observed reliability. In doing so, Sérbom followed the original
approach taken by Lord (1960) who analyzed these data in a similar way. Model III gives
the estimates for this analysis obtained with the LISREL program (for reasons unclear to
us, the results deviate somewhat from those reported by Sérbom, 1978).

On comparing the results, it is evident that there are only minor differences in this
case between the three approaches. However, if one does not have easy access to a
general-purpose minimization routine and prefers to use the LISREL program, it is in our
opinion advisable to use the Model I type of analysis instead of the Model III or Sérbom
type of analysis. The behavior of the likelihood function may depend on the assumption
of independent parallel measurements (which are in fact not available) and this might
affect properties of the estimates such as their standard errors.

Finally, a likelihood-ratio test for the assumption of equal within-groups regression
coefficients can be obtained in a straightforward manner with the LISREL program.
However, contrary to the assertion of Sérbom (1978), it is not possible to test the null
hypothesis «; = 0 with the LISREL program if the assumption of equal regression coef-
ficients is not tenable. The reason for this is that in the model underlying the LISREL
approach the test for «, = 0 is not independent of interval scale transformations of the
covariate measurements In the LISREL approach to ANCOVA, the model may be
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TABLE T

Analysis of Lord's Numerical Example According to
Structural Equation Model with Different Reliabilities
in each group (see text for explanation)

model I model II model IIT
» 1.1466 1.1466 1.1466
& 0.069 0.068 0.069
E 0.243 0.2L1 0.242
ﬁ1 4070 4.070 4.070
;2 5.3k40 5.3k0 5.340
Gf 4,306 4.196 4,282
SS 2.580 2.792 2.662
851 0.273 0.275 0.271
95 0.2k9 0.250 0.256
o§1 1.058 1.049 1.033
~D
Tso 1.058 1.046 1.084
X% test 2.67 (*) 2.6 2.92 (*)
for a=0

Note: (*) uncorrected value from LISREL program

written as
Yij = #;+ B; T + &y
where
w=p+o;— BT

The ANCOVA null hypothesis is tested in LISREL by comparing the u;’s. The problem
now is that these u;s may be different even though a; = 0 (for all j). Moreover, scale
transformations of T affect the outcome of this likelihood-ratio test. However, as we have
already mentioned earlier, it is best not to proceed with an ANCOVA type of analysis
when the assumption of equal regression coefficients has been rejected.
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Conclusions

In this paper we have examined the application of a functional and a structural
relationship approach to the analysis of covariance with a fallible covariate. Examples of
both types of analysis have been given for a simple two-group design. Several cases have
been discussed and we have given special attention to issues of model identifiability. An
approximate statistical test based on the functional relationship approach has been con-
structed. On the basis of our simulation results it may be concluded that this testing
procedure is to be preferred to the conventional F-test of the ANCOVA null hypothesis.
Further analysis of this approach to the problem of fallible covariates is obviously desir-
able, especially regarding its extension to more complicated ANCOVA designs. If one is
willing to assume a normal distribution for the covariate scores in each group, the
ANCOVA model may be formulated as a structural relationship problem. In this case, an
analysis based on the LISREL methodology should be performed. It would seem that in
both the functional and the structural case, knowledge of the reliability of the covariate is
desirable. In most cases, one should try to obtain parallel measurements of the covariate.
With such additional information, arbitrary assumptions concerning the error variances
can be avoided.

The results that we have presented with respect to the structural relationship ap-
proach may also have a wider significance. We have demonstrated that such a model may
lead to problematic results when it is applied to a situation where the corresponding
functional relationship would be unidentifiable. Uncritical use of a standard program
such as LISREL may lead to invalid results. Unfortunately, we have not been able to
determine the exact reason for these strange results. Based on the standard LISREL
approach, one would probably not have been alerted to these problems. Howeyer, this
implies that there may be other situations where the standard LISREL approach may not
applicable. Hence, further analysis of the structural relationship model, especially with
respect to the question of identifiability, would seem to be called for.

Finally, we wish to reiterate that the present approach should only be used when one
assumes that the dependent variable is linearly related to the true score on the covariate.
If the dependent variable is assumed to be related to the observed score on the covariate,
the standard ANCOVA results will be valid. However, we doubt whether such an as-
sumption is in fact reasonable in most applications of ANCOVA.
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